Moving boundary problem for a one-dimensional crawling nematode sperm cell model

被引:10
|
作者
Choi, YS [1 ]
Groulx, P
Lui, R
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
关键词
moving boundary problems; nonlocal differential equations; global existence;
D O I
10.1016/j.nonrwa.2004.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of the authors' investigation of the crawling nematode sperm cell model proposed by Mogilner and Verzi in 2003 (J. Stat. Phys. 110 (2003) 1169). In the earlier papers (J. Math. Biol. 49 (2004) 310 and J. Math. 8 (2004) 399), the first and last authors and Juliet Lee proved the existence of traveling wave solutions for the nematode sperm cell model. In this paper, we prove local existence of solutions to the same model and global existence under certain additional assumption on the initial data. Finally, we also provide numerical evidence that the traveling wave solutions found in (J. Math. Biol., accepted for publication) is globally asymptotically stable. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:874 / 898
页数:25
相关论文
共 50 条
  • [1] Traveling wave solutions for a one-dimensional crawling nematode sperm cell model
    Y.S. Choi
    Juliet Lee
    Roger Lui
    [J]. Journal of Mathematical Biology, 2004, 49 : 310 - 328
  • [2] Traveling wave solutions for a one-dimensional crawling nematode sperm cell model
    Choi, YS
    Lee, J
    Lui, R
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 49 (03) : 310 - 328
  • [3] A two-dimensional continuum model for the crawling nematode sperm cell
    Verzi, D. W.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2013, 16 (01) : 59 - 81
  • [4] Sperm Cell Crawling in the Nematode Caenorhabditis Elegans
    Mezanges, Xavier
    Plastino, Julie
    [J]. BIOPHYSICAL JOURNAL, 2012, 102 (03) : 696A - 696A
  • [5] Energy considerations in a model of nematode sperm crawling
    Bazaliy, BV
    Bazaliy, YB
    Friedman, A
    Hu, B
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (02) : 347 - 370
  • [6] Solving a one-dimensional moving boundary problem based on wave digital principles
    Bakr Al Beattie
    Karlheinz Ochs
    [J]. Multidimensional Systems and Signal Processing, 2023, 34 : 703 - 730
  • [7] THE METHOD OF LINES FOR RECONSTRUCTING A MOVING BOUNDARY IN ONE-DIMENSIONAL HEAT CONDUCTION PROBLEM
    Liu, Ji-Chuan
    Wei, Ting
    [J]. COMPUTATIONAL THERMAL SCIENCES, 2011, 3 (02): : 133 - 143
  • [8] Solving a one-dimensional moving boundary problem based on wave digital principles
    Al Beattie, Bakr
    Ochs, Karlheinz
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2023, 34 (04) : 703 - 730
  • [9] One-dimensional quantum walk with a moving boundary
    Kwek, Leong Chuan
    Setiawan
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [10] Classical solution of a one-dimensional parabolic boundary value problem with nonlinear boundary conditions and moving boundary
    I. A. Chernov
    [J]. Differential Equations, 2010, 46 : 1053 - 1062