Identifying influential nodes in social networks: A voting approach

被引:33
|
作者
Liu, Panfeng [1 ]
Li, Longjie [1 ]
Fang, Shiyu [1 ]
Yao, Yukai [2 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Social networks; Influence maximization; Voting approach; Spreading model; INFLUENCE MAXIMIZATION; COMMUNITY STRUCTURE; COMPLEX NETWORKS; SPREADERS; IDENTIFICATION; RANKING; CENTRALITY; DYNAMICS; INDEX; USERS;
D O I
10.1016/j.chaos.2021.111309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With the prosperity of social networks, the research of influence maximization has become growing importance and captured increasing attention from various disciplines. The key point in influence maximization is to identify a group of influential nodes that are scattered broadly in a network. In this regard, we propose the VoteRank(++) method, which is a voting approach, to iteratively select the influential nodes. In the viewpoint of VoteRank(++), nodes with different degrees should carry different amounts of votes in consideration of the diversity of nodes in voting ability, and a node may vote differently for its neighbors by considering the varying degrees of closeness between nodes. Moreover, to reduce the overlapping of influential regions of spreaders, VoteRank(++) discounts the voting ability of 2-hop neighbors of the selected nodes. Then, to avoid the cost of calculating the voting scores of all nodes in each iteration, only the nodes whose scores may change need to update their voting scores. To demonstrate the effectiveness of the proposed method, we employ both the Susceptible-Infected-Recovered and Linear Threshold models to simulate the spreading progress. Experimental results show that VoteRank(++) outperforms the baselines on both spreading speed and infected scale in most of the cases. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach
    Kumar, Sanjay
    Panda, B. S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 553
  • [2] Identifying Influential Nodes in Social Networks: Exploiting Self-Voting Mechanism
    Liu, Panfeng
    Li, Longjie
    Wen, Yanhong
    Fang, Shiyu
    [J]. BIG DATA, 2023, 11 (04) : 296 - 306
  • [3] A new structural and semantic approach for identifying influential nodes in social networks
    Hafiene, Nesrine
    Karoui, Wafa
    [J]. 2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 1338 - 1345
  • [4] Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach
    Wang, Yan
    Li, Haozhan
    Zhang, Ling
    Zhao, Linlin
    Li, Wanlan
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 162
  • [5] A Knowledge-aggregated Approach for Identifying Influential Nodes in Dynamic Social Networks
    Wang, Jing-Dong
    Liu, Tong
    Mu, Qi-Zi
    Meng, Fan-Qi
    Qu, Guang-Qiang
    [J]. Journal of Network Intelligence, 2024, 9 (01): : 192 - 209
  • [6] Identifying the influential nodes in complex social networks using centrality-based approach
    Ishfaq, Umar
    Khan, Hikmat Ullah
    Iqbal, Saqib
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9376 - 9392
  • [7] A new Centrality Measure for Identifying Influential Nodes in Social Networks
    Rhouma, Delel
    Ben Romdhane, Lotfi
    [J]. TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [8] Identifying Influential Nodes in Social Networks by Overlapping Community Structure
    Yetong W.
    Tao J.
    [J]. Data Analysis and Knowledge Discovery, 2022, 6 (12) : 80 - 89
  • [9] Identifying influential nodes in heterogeneous networks
    Molaei, Soheila
    Farahbakhsh, Reza
    Salehi, Mostafa
    Crespi, Noel
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 160
  • [10] Identifying influential nodes in complex networks
    Chen, Duanbing
    Lu, Linyuan
    Shang, Ming-Sheng
    Zhang, Yi-Cheng
    Zhou, Tao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1777 - 1787