Deep Learning for Feynman's Path Integral in Strong-Field Time-Dependent Dynamics

被引:111
|
作者
Liu, Xiwang [1 ,2 ]
Mang, Guojun [1 ]
Li, Jie [1 ]
Shi, Guangluo [1 ]
Zhou, Mingyang [1 ]
Huang, Boqiang [3 ]
Tang, Yajuan [4 ]
Song, Xiaohong [1 ,2 ,5 ]
Yang, Weifeng [1 ,2 ,5 ]
机构
[1] Shantou Univ, Coll Sci, Res Ctr Adv Opt & Photoelect, Dept Phys, Shantou 515063, Guangdong, Peoples R China
[2] Shantou Univ, Coll Sci, Dept Math, Shantou 515063, Guangdong, Peoples R China
[3] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[4] Shantou Univ, Coll Engn, Dept Elect & Informat Engn, Shantou 515063, Guangdong, Peoples R China
[5] Shantou Univ, Key Lab Intelligent Mfg Technol MOE, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NEURAL-NETWORKS; IONIZATION; TRANSITIONS; HOLOGRAPHY; GAME; GO;
D O I
10.1103/PhysRevLett.124.113202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Feynman's path integral approach is to sum over all possible spatiotemporal paths to reproduce the quantum wave function and the corresponding time evolution, which has enormous potential to reveal quantum processes in the classical view. However, the complete characterization of the quantum wave function with infinite paths is a formidable challenge, which greatly limits the application potential, especially in the strong-field physics and attosecond science. Instead of brute-force tracking every path one by one, here we propose a deep-learning-performed strong-field Feynman's formulation with a preclassification scheme that can predict directly the final results only with data of initial conditions, so as to attack unsurmountable tasks by existing strong-field methods and explore new physics. Our results build a bridge between deep learning and strong-field physics through Feynman's path integral, which would boost applications of deep learning to study the ultrafast time-dependent dynamics in strong-field physics and attosecond science and shed new light on the quantum-classical correspondence.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Feynman path-integral strong-field dynamics calculation method
    Liu, Xi-Wang
    Zhang, Hong-Dan
    Ben, Shuai
    Yang, Shi-Dong
    Ren, Xin
    Song, Xiao-Hong
    Yang, Wei-Feng
    ACTA PHYSICA SINICA, 2023, 72 (19)
  • [2] The time-dependent quartic oscillator - a Feynman path integral approach
    Albeverio, S.
    Mazzucchi, S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) : 471 - 488
  • [3] Ab initio study of time-dependent dynamics in strong-field triple ionization
    Thiede, Jan H.
    Eckhardt, Bruno
    Efimov, Dmitry K.
    Prauzner-Bechcicki, Jakub S.
    Zakrzewski, Jakub
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [4] Strong-field ionization in time-dependent density functional theory
    de Wijn, A. S.
    Lein, M.
    Kuemmel, S.
    EPL, 2008, 84 (04)
  • [5] The Feynman integral for time-dependent anharmonic oscillators
    Grothaus, M
    Khandekar, DC
    daSilva, JL
    Streit, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) : 3278 - 3299
  • [6] Path Integral Evaluation of a Time-Dependent Oscillator in an External Field
    Ikot, Akpan Ndem
    Ituen, Eno Etim
    Essien, Ime. E.
    Akpabio, Louis Ete
    TURKISH JOURNAL OF PHYSICS, 2008, 32 (06): : 305 - 313
  • [7] Radiation conditions for the time-dependent Schrodinger equation: Application to strong-field photoionization
    Boucke, K
    Schmitz, H
    Kull, HJ
    PHYSICAL REVIEW A, 1997, 56 (01): : 763 - 771
  • [9] Direct probing of tunneling time in strong-field ionization processes by time-dependent wave packets
    Yuan, Minghu
    OPTICS EXPRESS, 2019, 27 (05) : 6502 - 6511
  • [10] Optimal control of strong-field ionization with time-dependent density-functional theory
    Hellgren, Maria
    Rasanen, Esa
    Gross, E. K. U.
    PHYSICAL REVIEW A, 2013, 88 (01):