Enstrophy dissipation in two-dimensional turbulence

被引:5
|
作者
Baiesi, M [1 ]
Maes, C [1 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, B-3001 Heverlee, Belgium
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 05期
关键词
D O I
10.1103/PhysRevE.72.056314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated with the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio T-k equivalent to gamma(k)/(nu k(2)) of the intensity of driving gamma(k)>0 as a function of wave number k, to the dissipation strength nu k(2), where nu is the viscosity. The enstrophy current flows from higher to lower values of T-k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Enstrophy dissipation in freely evolving two-dimensional turbulence
    Tran, CV
    [J]. PHYSICS OF FLUIDS, 2005, 17 (08) : 1 - 3
  • [2] Constraints on the spectral distribution of energy and enstrophy dissipation in forced two-dimensional turbulence
    Tran, CV
    Shepherd, TG
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 165 (3-4) : 199 - 212
  • [3] The enstrophy cascade in forced two-dimensional turbulence
    Vallgren, Andreas
    Lindborg, Erik
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 671 : 168 - 183
  • [4] The enstrophy cascade in bounded two-dimensional turbulence
    Kramer, W.
    Clerex, H. J. H.
    van Heijst, G. J. F.
    [J]. ADVANCES IN TURBULENCE XI, 2007, 117 : 271 - 273
  • [5] Vanishing enstrophy dissipation in two-dimensional Navier-Stokes turbulence in the inviscid limit
    Tran, Chuong V.
    Dritschel, David G.
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 559 : 107 - 116
  • [6] Enstrophy Transfers Study in Two-Dimensional Turbulence
    Fischer, Patrick
    Bruneau, Charles-Henri
    [J]. PROGRESS IN TURBULENCE III, 2010, 131 : 41 - 44
  • [7] Energy and enstrophy spectra and fluxes for the inertial-dissipation range of two-dimensional turbulence
    Gupta, Akanksha
    Jayaram, Rohith
    Chaterjee, Anando G.
    Sadhukhan, Shubhadeep
    Samtaney, Ravi
    Verma, Mahendra K.
    [J]. PHYSICAL REVIEW E, 2019, 100 (05)
  • [8] Energy and enstrophy transfer in decaying two-dimensional turbulence
    Rivera, MK
    Daniel, WB
    Chen, SY
    Ecke, RE
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (10)
  • [9] Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence
    Reeves, Matthew T.
    Billam, Thomas P.
    Yu, Xiaoquan
    Bradley, Ashton S.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (18)
  • [10] Enstrophy inertial range dynamics in generalized two-dimensional turbulence
    Iwayama, Takahiro
    Watanabe, Takeshi
    [J]. PHYSICAL REVIEW FLUIDS, 2016, 1 (03):