Numerical simulation of acoustic wake effect in acoustic agglomeration under Oseen flow condition

被引:53
|
作者
Zhang GuangXue [1 ]
Liu JianZhong [2 ]
Wang Jie [2 ]
Zhou JunHu [2 ]
Cen KeFa [2 ]
机构
[1] China Jiliang Univ, Inst Energy Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Univ, Inst Thermal Power Engn, Hangzhou 310027, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 19期
基金
浙江省自然科学基金;
关键词
acoustic agglomeration; aerosol particle; hydrodynamic interactions; acoustic wake effect; Oseen region; AEROSOL-PARTICLES; HYDRODYNAMIC INTERACTION; SOUND FIELD; VISUALIZATION; ULTRASOUND;
D O I
10.1007/s11434-012-5212-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We numerically simulate the hydrodynamic interaction of aerosol particles due to the acoustic wake effect under the Oseen flow condition. Attraction is found for two nearby particles with an orientation angle of 0 to 50A degrees with respect to the acoustic field, and weak repulsion is found outside this range. Good agreement is obtained between the numerical results and experiments in the literature. We study the influence of particle size, sound wave frequency and the particle separation. The result shows that the acoustic wake effect plays a significant role in acoustic agglomeration. It could be either the major agglomeration mechanism of monodisperse aerosols or the major refill mechanism for polydisperse aerosols to supplement orthokinetic interaction.
引用
收藏
页码:2404 / 2412
页数:9
相关论文
共 50 条
  • [1] Numerical simulation of acoustic wake effect in acoustic agglomeration under Oseen flow condition
    ZHANG GuangXue1
    2 Institute for Thermal Power Engineering
    [J]. Science Bulletin, 2012, 57 (19) : 2404 - 2412
  • [2] An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect
    Hoffmann, TL
    [J]. JOURNAL OF AEROSOL SCIENCE, 1997, 28 (06) : 919 - 936
  • [3] A new model for the acoustic wake effect in aerosol acoustic agglomeration processes
    Zhang, Guangxue
    Zhang, Lili
    Wang, Jinqing
    Chi, Zuohe
    [J]. APPLIED MATHEMATICAL MODELLING, 2018, 61 : 124 - 140
  • [4] Direct Simulation Monte Carlo Method for Acoustic Agglomeration under Standing Wave Condition
    Fan, Fengxian
    Zhang, Mingjun
    Peng, Zhengbiao
    Chen, Jun
    Su, Mingxu
    Moghtaderi, Behdad
    Doroodchi, Elham
    [J]. AEROSOL AND AIR QUALITY RESEARCH, 2017, 17 (04) : 1073 - 1083
  • [5] NUMERICAL-SIMULATION OF ACOUSTIC AGGLOMERATION AND EXPERIMENTAL-VERIFICATION
    TIWARY, R
    REETHOF, G
    [J]. JOURNAL OF VIBRATION ACOUSTICS STRESS AND RELIABILITY IN DESIGN-TRANSACTIONS OF THE ASME, 1987, 109 (02): : 185 - 191
  • [6] Numerical simulation of a slit resonator in a grazing flow under acoustic excitation
    Tam, Christopher K. W.
    Ju, Hongbin
    Walker, Bruce E.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2008, 313 (3-5) : 449 - 471
  • [7] The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols
    Dong, SZ
    Lipkens, B
    Cameron, TM
    [J]. JOURNAL OF AEROSOL SCIENCE, 2006, 37 (04) : 540 - 553
  • [8] Numerical simulation of a turbulent channel flow with an acoustic liner
    Sebastian, Robin
    Marx, David
    Fortune, Veronique
    [J]. JOURNAL OF SOUND AND VIBRATION, 2019, 456 : 306 - 330
  • [9] Numerical and Flow Field Simulation of Acoustic Levitation Polishing
    Wang, W. F.
    Zhang, J.
    Wen, D. H.
    [J]. DIGITAL DESIGN AND MANUFACTURING TECHNOLOGY II, 2011, 215 : 195 - 198
  • [10] Numerical simulation of acoustic field under mechanical stirring
    刘金河
    沈壮志
    林书玉
    [J]. Chinese Physics B, 2021, (10) : 344 - 349