In the squid axon Na+/Ca2+ exchanger the state of the Cai-regulatory site influences the affinities of the intra- and extracellular transport sites for Na+ and Ca2+

被引:5
|
作者
DiPolo, Reinaldo [2 ,3 ]
Beauge, Luis [1 ,3 ]
机构
[1] INIMEC CONICET, Lab Biofis, Inst Invest Med M & M Ferreyra, RA-5000 Cordoba, Argentina
[2] Inst Venezolano Invest Cient, Ctr Biofis & Bioquim, Lab Fisiol Celular, Caracas 1020A, Venezuela
[3] Marine Biol Lab, Woods Hole, MA 02543 USA
来源
基金
美国国家科学基金会;
关键词
sodium-calcium exchange; exchanger regulation; squid axon; transport sites;
D O I
10.1007/s00424-007-0430-0
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
In squid axons, intracellular Mg(2+) reduces the activity of the Na(+)/Ca(2+) exchanger by competing with Ca(i)(2+) for its regulatory site. The state of the Ca(i)-regulatory site (active-inactive) also alters the apparent affinity of intra- and extracellular transport sites. Conditions that hinder the binding of (low pH(i), low [Ca(2+)](i), high [Mg(2+)](i)) diminish the apparent affinity of intracellular transport sites, in particular for Na(i) due to its synergism with H(+) inhibition, but less noticeably for Ca(i)(2+) because of its antagonism towards (H(i)(+) + Na(i)(+)) and Mg(i)(2+) inhibitions. These are kinetic effects unrelated to the true affinity of the sites. With the Ca(i)-regulatory site saturated, the intracellular transporting sites are insensitive to [H(+)](i) and to ATP. Likewise, the state of the Ca(i)-regulatory site (activated or inactivated) influences the affinity of the extracellular Ca(o) and Na(o)-transport sites (trans effects). In this case, the effects are opposite to those predicted by any of the transport schemes proposed for the Na(+)/Ca(2+)exchanger; i.e. its mechanism remains unexplained. In addition to their intrinsic importance for a full understanding of the properties of the Na(+)/Ca(2+) exchanger, these findings show a new way by which the state of the Ca(i)-regulatory site may determine net movements of Ca(2+) through this system.
引用
收藏
页码:623 / 633
页数:11
相关论文
共 50 条
  • [1] In the squid axon Na+/Ca2+ exchanger the state of the Cai-regulatory site influences the affinities of the intra- and extracellular transport sites for Na+ and Ca2+
    Reinaldo DiPolo
    Luis Beaugé
    Pflügers Archiv - European Journal of Physiology, 2008, 456 : 623 - 633
  • [2] The Squid Axon Na+/Ca2+ Exchanger Shows Ping Pong Kinetics only when the Cai-regulatory Site is Saturated
    Beauge, Luis
    DiPolo, Reinaldo
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2009, 23 (1-3) : 37 - 42
  • [3] Topics on the Na+/Ca2+ exchanger:: Pharmacological characterization of Na+/Ca2+ exchanger inhibitors
    Watanabe, Yasuhide
    Koide, Yuuki
    Kimura, Junko
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2006, 102 (01) : 7 - 16
  • [4] Ca2+ Regulation of Ion Transport in the Na+/Ca2+ Exchanger
    Hilge, Mark
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (38) : 31641 - 31649
  • [5] Ca2+ regulation of the Na+/Ca2+ exchanger
    Chaptal, Vincent
    Mercado-Besserer, Gabriel
    Ottolia, Michela
    Nicoll, Deborah
    Philipson, Kenneth
    Abramson, Jeff
    FASEB JOURNAL, 2009, 23
  • [6] Forefront of Na+/Ca2+ exchanger studies:: Regulation kinetics of Na+/Ca2+ exchangers
    Matsuoka, S
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2004, 96 (01) : 12 - 14
  • [7] The mitochondrial Na+/Ca2+ exchanger
    Palty, Raz
    Sekler, Israel
    CELL CALCIUM, 2012, 52 (01) : 9 - 15
  • [8] Inhibitors of Na+/Ca2+ exchanger
    Watanabe, Y
    Iwamoto, T
    Kimura, J
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2005, 97 : 55P - 55P
  • [9] Pharmacology of Na+/Ca2+ exchanger
    Kimura, J
    Watanabe, Y
    Li, LB
    Watano, T
    CELLULAR AND MOLECULAR PHYSIOLOGY OF SODIUM-CALCIUM EXCHANGE, 2002, 976 : 513 - 519
  • [10] In dialyzed squid axons oxidative stress inhibits the Na+/Ca2+ exchanger by impairing the Cai2+-regulatory site
    DiPolo, Reinaldo
    Beauge, Luis
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2011, 301 (03): : C687 - C694