Edge-bipancyclicity of a hypercube with faulty vertices and edges

被引:44
|
作者
Hsieh, Sun-Yuan [1 ]
Shen, Tzu-Hsiung [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
关键词
hypercubes; interconnection networks; cycle embedding; fault-tolerant embedding bipancyclicity; edge-bipancyclicity;
D O I
10.1016/j.dam.2007.08.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bipartite graph G = (V, E) is said to be bipancyclic if it contains a cycle of every even length from 4 to vertical bar V vertical bar. Furthermore, a bipancyclic G is said to be edge-bipancyclic if every edge of G lies on a cycle of every even length. Let F-v (respectively, F-e) be the set of faulty vertices (respectively, faulty edges) in an n-dimensional hypercube Q(n). In this paper, we show that every edge of Q(n) - F-v - F-e lies on a cycle of every even length from 4 to 2(n) - 2 vertical bar F-v vertical bar even if vertical bar F-v vertical bar + vertical bar F-e vertical bar <= n - 2, where n >= 3. Since Q(n) is bipartite of equal-size partite sets and is regular of vertex-degree n, both the number of faults tolerated and the length of a longest fault-free cycle obtained are worst-case optimal. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1802 / 1808
页数:7
相关论文
共 50 条
  • [1] Conditional fault-tolerant edge-bipancyclicity of hypercubes with faulty vertices and edges
    Yang, Da-Wei
    Gu, Mei-Mei
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 627 : 82 - 89
  • [2] Edge-bipancyclicity of conditional faulty hypercubes
    Shih, Lun-Min
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    [J]. INFORMATION PROCESSING LETTERS, 2007, 105 (01) : 20 - 25
  • [3] Edge-Bipancyclicity of All Conditionally Faulty Hypercubes
    Sun, Chao-Ming
    Jou, Yue-Dar
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PT 2, PROCEEDINGS, 2010, 6082 : 275 - 280
  • [4] Edge-bipancyclicity of star graphs with faulty elements
    Huang, Chao-Wen
    Huang, Hui-Ling
    Hsieh, Sun-Yuan
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (50) : 6938 - 6947
  • [5] Edge-bipancyclicity of the k-ary n-cubes with faulty nodes and edges
    Li, Jing
    Wang, Shiying
    Liu, Di
    Lin, Shangwei
    [J]. INFORMATION SCIENCES, 2011, 181 (11) : 2260 - 2267
  • [6] Edge-pancyclicity and edge-bipancyclicity of faulty folded hypercubes
    Kuo, Che-Nan
    Stewart, Iain A.
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 627 : 102 - 106
  • [7] Fault-Tolerant Cycle Embedding in Cartesian Product Graphs: Edge-Pancyclicity and Edge-Bipancyclicity with Faulty Edges
    Cheng, Chia-Wen
    Hsieh, Sun-Yuan
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (11) : 2997 - 3011
  • [8] Edge-bipancyclicity in conditional edge-faulty k-ary n-cubes*
    Wang, Shiying
    Zhang, Shurong
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2019, 53 (3-4): : 85 - 113
  • [9] Connectivity and edge-bipancyclicity of Hamming shell
    S. A. Mane
    B. N. Waphare
    [J]. Journal of Applied Mathematics and Computing, 2019, 61 : 677 - 690
  • [10] Connectivity and edge-bipancyclicity of Hamming shell
    Mane, S. A.
    Waphare, B. N.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 61 (1-2) : 677 - 690