Constraining neutrinos and dark energy with galaxy clustering in the dark energy survey

被引:2
|
作者
Zablocki, Alan [1 ,2 ]
机构
[1] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
关键词
DIGITAL SKY SURVEY; ANGULAR POWER SPECTRUM; PHOTOMETRIC REDSHIFTS; EQUATION; CMB; ANISOTROPIES; COMPONENT;
D O I
10.1103/PhysRevD.94.043525
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We determine the forecast errors on the absolute neutrino mass scale and the equation of state of dark energy by combining synthetic data from the Dark Energy Survey (DES) and the cosmic microwave background Planck surveyor. We use angular clustering of galaxies for DES in seven redshift shells up to z similar to 1.7 including cross-correlations between different redshift shells. We study models with massless and massive neutrinos and three different dark energy models:. cold dark matter (CDM) (w = -1), wCDM (constant w), and w(a)CDM [ evolving equation of state parameter w(a) = w(0) + w(a)(1-a)]. We include the impact of uncertainties in modeling galaxy bias using a constant and a redshift-evolving bias model. For the Lambda CDM model we obtain an upper limit for the sum of neutrino masses from DES + Planck of Sigma m(v) < 0.08 eV (95% C.L.) for a fiducial mass of Sigma m(v) = 0.047 eV, with a 1 sigma error of 0.02 eV, assuming perfect knowledge of galaxy bias. For the wCDM model the limit is Sigma m(v) < 0.10 eV. For a wCDM model where galaxy bias evolves with redshift, the upper limit on the sum of neutrino masses increases to 0.29 eV. DES will be able to place competitive upper limits on the sum of neutrino masses of 0.1-0.3 eV and could therefore strongly constrain the inverted mass hierarchy of neutrinos. In a wCDM model the 1 sigma error on constant w is Delta w = 0.03 from DES galaxy clustering and Planck. Allowing Sigma m(v) as a free parameter increases the error on w by a factor of 2, with Delta w = 0.06. In a waCDM model, in which the dark energy equation of state varies with time, the errors are Delta w(0) = 0.2 and Delta w(a) = 0.42. Including neutrinos and redshift-dependent galaxy bias increases the errors to Delta w(0) = 0.39 and Delta w(a) = 0.99.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Galaxy clustering and dark energy
    Munshi, D
    Porciani, C
    Wang, Y
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 349 (01) : 281 - 290
  • [2] Can a galaxy redshift survey measure dark energy clustering?
    Takada, Masahiro
    [J]. PHYSICAL REVIEW D, 2006, 74 (04)
  • [3] Constraining dark energy
    Danielsson, Ulf H.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (07):
  • [4] Constraining the evolution of dark energy with a combination of galaxy cluster observables
    Wang, S
    Khoury, J
    Haiman, Z
    May, M
    [J]. PHYSICAL REVIEW D, 2004, 70 (12): : 123008 - 1
  • [5] Dark Energy Survey year 1 results: Galaxy clustering for combined probes
    Elvin-Poole, J.
    Crocce, M.
    Ross, A. J.
    Giannantonio, T.
    Rozo, E.
    Rykoff, E. S.
    Avila, S.
    Banik, N.
    Blazek, J.
    Bridle, S. L.
    Cawthon, R.
    Drlica-Wagner, A.
    Friedrich, O.
    Kokron, N.
    Krause, E.
    MacCrann, N.
    Prat, J.
    Sanchez, C.
    Secco, L. F.
    Sevilla-Noarbe, I.
    Troxel, M. A.
    Abbott, T. M. C.
    Abdalla, F. B.
    Allam, S.
    Annis, J.
    Asorey, J.
    Bechtol, K.
    Becker, M. R.
    Benoit-Levy, A.
    Bernstein, G. M.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Carnero Rosell, A.
    Carollo, D.
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    Davis, T. M.
    Davis, C.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Dodelson, S.
    Doel, P.
    Eifler, T. F.
    [J]. PHYSICAL REVIEW D, 2018, 98 (04)
  • [6] Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey
    Park, Y.
    Krause, E.
    Dodelson, S.
    Jain, B.
    Amara, A.
    Becker, M. R.
    Bridle, S. L.
    Clampitt, J.
    Crocce, M.
    Fosalba, P.
    Gaztanaga, E.
    Honscheid, K.
    Rozo, E.
    Sobreira, F.
    Sanchez, C.
    Wechsler, R. H.
    Abbott, T.
    Abdalla, F. B.
    Allam, S.
    Benoit-Levy, A.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Carnero Rosell, A.
    Carrasco Kind, M.
    Carretero, J.
    Castander, F. J.
    da Costa, L. N.
    DePoy, D. L.
    Desai, S.
    Dietrich, J. P.
    Doel, P.
    Eifler, T. F.
    Fausti Neto, A.
    Fernandez, E.
    Finley, D. A.
    Flaugher, B.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gutierrez, G.
    James, D. J.
    Kent, S.
    Kuehn, K.
    Kuropatkin, N.
    Lima, M.
    Maia, M. A. G.
    Marshall, J. L.
    Melchior, P.
    [J]. PHYSICAL REVIEW D, 2016, 94 (06)
  • [7] Leptogenesis, dark energy, dark matter and the neutrinos
    Sarkar, Utpal
    [J]. THEORETICAL HIGH ENERGY PHYSICS, 2007, 939 : 124 - 133
  • [8] Constraining Dark Matter-Dark Energy Interaction with Gas Mass Fraction in Galaxy Clusters
    Goncalves, R. S.
    Alcaniz, J. S.
    Dev, A.
    Jain, D.
    [J]. HIGHLIGHTS OF ASTRONOMY, VOL 15, 2010, 15 : 328 - 328
  • [9] Constraining the properties of dark energy
    Huterer, D
    Turner, MS
    [J]. RELATIVISTIC ASTROPHYSICS, 2001, 586 : 297 - 302
  • [10] Massive neutrinos and dark energy
    Serra, Paolo
    Bean, Rachel
    De La Macorra, Axel
    Melchiorri, Alessandro
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2007, 168 : 31 - 33