Rapid parameter estimation of a two-component neutron star model with spin wandering using a Kalman filter

被引:11
|
作者
Meyers, Patrick M. [1 ,2 ]
O'Neill, Nicholas J. [1 ]
Melatos, Andrew [1 ,2 ]
Evans, Robin J. [2 ,3 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Univ Melbourne, OzGrav, Parkville, Vic 3010, Australia
[3] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
methods: data analysis; stars: neutron; pulsars: general; FLUX-TUBE ARRAYS; MILLISECOND PULSAR; TIMING NOISE; SUPERFLUID HYDRODYNAMICS; GRAVITATIONAL-RADIATION; MAXIMUM-LIKELIHOOD; DISK ACCRETION; CRAB PULSAR; GLITCHES; VORTEX;
D O I
10.1093/mnras/stab1952
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The classic, two-component, crust-superfluid model of a neutron star can be formulated as a noise-driven, linear dynamical system, in which the angular velocities of the crust and superfluid are tracked using a Kalman filter applied to electromagnetic pulse timing data and gravitational-wave data, when available. Here it is shown how to combine the marginal likelihood of the Kalman filter and nested sampling to estimate full posterior distributions of the six model parameters, extending previous analyses based on a maximum-likelihood approach. The method is tested across an astrophysically plausible parameter domain using Monte Carlo simulations. It recovers the injected parameters to less than or similar to 10 percent for time series containing similar to 10(3) samples, typical of long-term pulsar timing campaigns. It runs efficiently in O(1) CPU-hr for data sets of the above size. In a present-day observational scenario, when electromagnetic data are available only, the method accurately estimates three parameters: the relaxation time, the ensemble-averaged spin-down of the system, and the amplitude of the stochastic torques applied to the crust. In a future observational scenario, where gravitational-wave data are also available, the method also estimates the ratio between the moments of inertia of the crust and the superfluid, the amplitude of the stochastic torque applied to the superfluid, and the crust-superfluid lag. These empirical results are consistent with a formal identifiability analysis of the linear dynamical system.
引用
收藏
页码:3349 / 3363
页数:15
相关论文
共 50 条
  • [1] Parameter estimation of a two-component neutron star model with spin wandering
    Meyers, Patrick M.
    Melatos, Andrew
    Neill, Nicholas J. O.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 502 (03) : 3113 - 3127
  • [2] Rotation of a two-component model neutron star in the GTR
    D. M. Sedrakian
    [J]. Astrophysics, 1997, 40 (3) : 260 - 266
  • [3] Using Genetic Algorithms for Parameter Estimation of a Two-Component Circular Mixture Model
    Kilic, Muhammet Burak
    [J]. 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 99 - 110
  • [4] Two-component Superfluid Hydrodynamics of Neutron Star Cores
    Kobyakov, D. N.
    Pethick, C. J.
    [J]. ASTROPHYSICAL JOURNAL, 2017, 836 (02):
  • [5] Parameter estimation of an SMA actuator model using an extended Kalman filter
    Soltani, M.
    Bozorg, M.
    Zakerzadeh, M. R.
    [J]. MECHATRONICS, 2018, 50 : 148 - 159
  • [6] Combined state and parameter estimation for a landslide model using Kalman filter
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    [J]. IFAC PAPERSONLINE, 2021, 54 (07): : 304 - 309
  • [7] Lung model parameter estimation by unscented Kalman filter
    Saatci, Esra
    Akan, Aydin
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2556 - +
  • [8] Star spot location estimation using Kalman filter for star tracker
    Liu, Hai-bo
    Yang, Jian-kun
    Wang, Jiong-qi
    Tan, Ji-chun
    Li, Xiu-jian
    [J]. APPLIED OPTICS, 2011, 50 (12) : 1735 - 1744
  • [9] Using the Kalman filter for parameter estimation in biogeochemical models
    Trudinger, C. M.
    Raupach, M. R.
    Rayner, P. J.
    Enting, I. G.
    [J]. ENVIRONMETRICS, 2008, 19 (08) : 849 - 870
  • [10] Modal parameter estimation using interacting Kalman filter
    Zghal, Meriem
    Mevel, Laurent
    Del Moral, Pierre
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 139 - 150