Maps on matrix algebras preserving idempotents

被引:23
|
作者
Dolinar, G [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, SI-10000 Ljubljana, Slovenia
关键词
nonlinear preserver problem; idempotent;
D O I
10.1016/S0024-3795(03)00463-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M-n be the algebra of all n x n complex matrices and P-n the set of all idempotents in M-n. Suppose phi : M-n --> M-n is a surjective map satisfying A - lambdaB is an element of P-n if and only if phi(A) - lambdaphi(B) is an element of P-n, A, B is an element of M-n, lambda is an element of C. Then either phi is of the form phi(A) = TAT(-1), A is an element of M-n, or phi is of the form phi(A) = TA(t)T(-1), A is an element of M-n, where T is an element of M-n is a nonsingular matrix. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 50 条
  • [1] Determinant preserving maps on matrix algebras
    Dolinar, G
    Semrl, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 348 (1-3) : 189 - 192
  • [2] Maps on matrix algebras preserving commutativity
    Dolinar, G
    Semrl, P
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (01): : 69 - 78
  • [3] Nonlinear determinant preserving maps on matrix algebras
    Costara, Constantin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 583 : 165 - 170
  • [4] Nonlinear invertibility preserving maps on matrix algebras
    Costara, Constantin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 (602) : 216 - 222
  • [5] Maps on B(H) preserving idempotents
    Dolinar, G
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (05): : 335 - 347
  • [6] Invertibility preserving maps preserve idempotents
    Bresar, M
    Semrl, P
    MICHIGAN MATHEMATICAL JOURNAL, 1998, 45 (03) : 483 - 488
  • [7] Supercommuting maps on unital algebras with idempotents
    Luo, Yingyu
    Wang, Yu
    AIMS MATHEMATICS, 2024, 9 (09): : 24636 - 24653
  • [8] Additive Maps on Matrix Algebras Preserving Invertibility or Singularity
    Ajda FO NER
    Peter EMRL
    Acta Mathematica Sinica(English Series), 2005, 21 (04) : 681 - 684
  • [9] Additive maps on matrix algebras preserving invertibility or singularity
    Fošner A.
    Šemrl P.
    Acta Mathematica Sinica, 2005, 21 (4) : 681 - 684
  • [10] Pairs of maps preserving singularity on subsets of matrix algebras
    Guterman, A.E.
    Maksaev, A.M.
    Promyslov, V.V.
    Linear Algebra and Its Applications, 2022, 644 : 1 - 27