Fractional rate of convergence for viscous approximation to nonconvex conservation laws

被引:9
|
作者
Tang, T [1 ]
Teng, ZH
Xin, ZP
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R China
关键词
rate of convergence; error estimate; viscous approximation; conservation law; nonconvex flux;
D O I
10.1137/S0036141001388993
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the viscous approximations to conservation laws with nonconvex flux function. It is shown that if the entropy solutions are piecewise smooth, then the rate of L-1-convergence is a fractional number in (0.5, 1]. This is in contrast to the corresponding result for the convex conservation laws. Numerical experiments indicate that the theoretical prediction for the convergence rate is optimal.
引用
收藏
页码:98 / 122
页数:25
相关论文
共 50 条