The iterative methods for computing the polar decomposition of rank-deficient matrix

被引:7
|
作者
Du, K [1 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
polar decomposition; singular value decomposition; Newton method; matrix sign function;
D O I
10.1016/j.amc.2003.12.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some iterative methods for computing the polar decomposition are introduced. They can be used to compute the polar decomposition of rank-deficient matrix which includes both square and rectangular matrices. A very important application of the polar decomposition is about matrix sign function. Through the methods of this paper to compute the matrix sign function is convenient. Some examples are provided in this paper. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [1] Computing the Nearest Rank-Deficient Matrix Polynomial
    Giesbrecht, Mark
    Haraldson, Joseph
    Labahn, George
    [J]. PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17), 2017, : 181 - 188
  • [2] Iterative MIMO detection for rank-deficient systems
    Wolfgang, A.
    Akhtman, J.
    Chen, S.
    Hanzo, L.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (11) : 699 - 702
  • [3] A class of iterative methods for computing polar decomposition
    Esmaeili, H.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) : 207 - 220
  • [4] Portfolio Selection with a Rank-Deficient Covariance Matrix
    Gulliksson, Marten
    Oleynik, Anna
    Mazur, Stepan
    [J]. COMPUTATIONAL ECONOMICS, 2024, 63 (06) : 2247 - 2269
  • [5] Sparse Principal Component of a Rank-deficient Matrix
    Asteris, Megasthenis
    Papailiopoulos, Dimitris S.
    Karystinos, George N.
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 673 - 677
  • [6] Spectral estimator with rank-deficient covariance matrix
    Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    不详
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2008, 48 (01): : 55 - 58
  • [7] RANDOMIZED METHODS FOR RANK-DEFICIENT LINEAR SYSTEMS
    Sifuentes, Josef
    Gimbutas, Zydrunas
    Greengard, Leslie
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 177 - 188
  • [8] Secure Degrees of Freedom of Rank-Deficient BCCM and Rank-Deficient ICCM
    Wang, Qiang
    Zhang, Tianjiao
    Dong, Dongli
    Li, Xuan
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (04) : 4033 - 4041
  • [9] A relaxed iterative projection algorithm for rank-deficient regression problems
    Schimek, Michael G.
    Stettner, Haro
    [J]. ART OF SEMIPARAMETRICS, 2006, : 77 - +
  • [10] Recurrent neural networks for computing pseudoinverses of rank-deficient matrices
    Wang, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (05): : 1479 - 1493