A survey of zero-day malware attacks and its detection methodology

被引:0
|
作者
Radhakrishnan, Kiran [1 ]
Menon, Rajeev R. [1 ]
Nath, Hiran V. [1 ]
机构
[1] Natl Inst Technol Calicut, Dept Comp Sci & Engn, Kozhikode, India
关键词
zero-days; malware; cryptojacking; detection; analysis;
D O I
10.1109/tencon.2019.8929620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The recent malware outbreaks have shown that the existing end-point security solutions are not robust enough to secure the systems from getting compromised. The techniques, like code obfuscation along with one or more zero-days, are used by malware developers for evading the security systems. These malwares are used for large-scale attacks involving Advanced Persistent Threats(APT), Botnets, Cryptojacking, etc. Cryptojacking poses a severe threat to various organizations and individuals. We are summarising multiple methods available for the detection of malware.
引用
收藏
页码:533 / 539
页数:7
相关论文
共 50 条
  • [1] Zero-Day Malware Detection
    Gandotra, Ekta
    Bansal, Divya
    Sofat, Sanjccv
    [J]. 2016 SIXTH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED 2016), 2016, : 171 - 175
  • [2] Deep Learning for Zero-day Malware Detection and Classification: A Survey
    Deldar, Fatemeh
    Abadi, Mahdi
    [J]. ACM COMPUTING SURVEYS, 2024, 56 (02)
  • [3] Detection of Zero-day Attacks on IoT
    Reardon, Shay
    Hssayeni, Murtadha D.
    Mahgoub, Imadeldin
    [J]. 2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [4] Big Data Framework for Zero-Day Malware Detection
    Gupta, Deepak
    Rani, Rinkle
    [J]. CYBERNETICS AND SYSTEMS, 2018, 49 (02) : 103 - 121
  • [5] Use of Data Visualisation for Zero-Day Malware Detection
    Venkatraman, Sitalakshmi
    Alazab, Mamoun
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2018,
  • [6] Cyber resilience recovery model to combat zero-day malware attacks
    Tran, Hiep
    Campos-Nanez, Enrique
    Fomin, Pavel
    Wasek, James
    [J]. COMPUTERS & SECURITY, 2016, 61 : 19 - 31
  • [7] A Reinforcement Learning-Based Approach for Detection Zero-Day Malware Attacks on IoT System
    Ngo, Quoc-Dung
    Nguyen, Quoc-Huu
    [J]. ARTIFICIAL INTELLIGENCE TRENDS IN SYSTEMS, VOL 2, 2022, 502 : 381 - 394
  • [8] Zero-Day Malware Classification and Detection Using Machine Learning
    Kumar J.
    Rajendran B.
    Sudarsan S.D.
    [J]. SN Computer Science, 5 (1)
  • [9] Detection of Zero-day Malware Based on the Analysis of Opcode Sequences
    Zolotukhin, Mikhail
    Hamalainen, Timo
    [J]. 2014 IEEE 11TH CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE (CCNC), 2014,
  • [10] Combining Supervised and Unsupervised Learning for Zero-Day Malware Detection
    Comar, Prakash Mandayam
    Liu, Lei
    Saha, Sabyasachi
    Tan, Pang-Ning
    Nucci, Antonio
    [J]. 2013 PROCEEDINGS IEEE INFOCOM, 2013, : 2022 - 2030