Geometry optimization of periodic systems using internal coordinates -: art. no. 124508

被引:137
|
作者
Bucko, T
Hafner, J
Angyán, JG
机构
[1] Univ Vienna, Inst Mat Phys, A-1090 Vienna, Austria
[2] Univ Henri Poincare, CNRS, Lab Cristallog & Modelisat Mat Mineraux & Biol, UMR 7036, F-54506 Vandoeuvre Les Nancy, France
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 122卷 / 12期
关键词
D O I
10.1063/1.1864932
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An algorithm is proposed for the structural optimization of periodic systems in internal (chemical) coordinates. Internal coordinates may include in addition to the usual bond lengths, bond angles, out-of-plane and dihedral angles, various "lattice internal coordinates" such as cell edge lengths, cell angles, cell volume, etc. The coordinate transformations between Cartesian (or fractional) and internal coordinates are performed by a generalized Wilson B-matrix, which in contrast to the previous formulation by Kudin [J. Chem. Phys. 114, 2919 (2001)] includes the explicit dependence of the lattice parameters on the positions of all unit cell atoms. The performance of the method, including constrained optimizations, is demonstrated on several examples, such as layered and microporous materials (gibbsite and chabazite) as well as the urea molecular crystal. The calculations used energies and forces from the ab initio density functional theory plane wave method in the projector-augmented wave formalism.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Transition state optimization of periodic systems using delocalized internal coordinates
    Tomáš Bučko
    Theoretical Chemistry Accounts, 2018, 137
  • [2] Transition state optimization of periodic systems using delocalized internal coordinates
    Bucko, Tomas
    THEORETICAL CHEMISTRY ACCOUNTS, 2018, 137 (12)
  • [3] Geometry optimization of solids using delocalized internal coordinates
    Andzelm, J
    King-Smith, RD
    Fitzgerald, G
    CHEMICAL PHYSICS LETTERS, 2001, 335 (3-4) : 321 - 326
  • [4] GEOMETRY OPTIMIZATION IN REDUNDANT INTERNAL COORDINATES
    PULAY, P
    FOGARASI, G
    JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (04): : 2856 - 2860
  • [5] Using hysteresis for optimization -: art. no. 150201
    Zaránd, G
    Pázmándi, F
    Pál, KF
    Zimányi, GT
    PHYSICAL REVIEW LETTERS, 2002, 89 (15) : 150201/1 - 150201/4
  • [6] Geometry optimization of solids using delocalized internal coordinates.
    Andzelm, JW
    King-Smith, RD
    Fitzgerald, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U435 - U435
  • [7] Geometry optimization in generalized natural internal coordinates
    von Arnim, M
    Ahlrichs, R
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (20): : 9183 - 9190
  • [8] Geometry optimization of molecular clusters and complexes using scaled internal coordinates
    Maslen, PE
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01):
  • [9] On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules -: art. no. 224319
    Zúñiga, J
    Picón, JAG
    Bastida, A
    Requena, A
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (22):
  • [10] Optimization of momentum imaging systems using electric and magnetic fields -: art. no. 013105
    Gisselbrecht, M
    Huetz, A
    Lavollée, M
    Reddish, TJ
    Seccombe, DP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (01):