Regularity of Lorentzian Busemann functions

被引:19
|
作者
Galloway, GJ [1 ]
Horta, A [1 ]
机构
[1] NATL SECUR AGCY,FT GEORGE G MEADE,MD 20755
关键词
D O I
10.1090/S0002-9947-96-01587-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general theory of regularity for Lorentzian Busemann functions in future timelike geodesically complete spacetimes is presented. This treatment simplifies and extends the local regularity developed by Eschenburg, Galloway and Newman to prove the Lorentzian splitting theorem. Criteria for global regularity are obtained and used to improve results in the literature pertaining to a conjecture of Bartnik.
引用
收藏
页码:2063 / 2084
页数:22
相关论文
共 50 条
  • [1] Bartnik's splitting conjecture and Lorentzian Busemann function
    Amini, Roya
    Sharifzadeh, Mehdi
    Bahrampour, Yousof
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (10)
  • [2] Busemann Functions and Barrier Functions
    Cui, Xiaojun
    Cheng, Jian
    ACTA APPLICANDAE MATHEMATICAE, 2017, 152 (01) : 93 - 110
  • [3] Busemann Functions and Barrier Functions
    Xiaojun Cui
    Jian Cheng
    Acta Applicandae Mathematicae, 2017, 152 : 93 - 110
  • [4] Symmetric Busemann functions
    Phadke, B
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 197 (02) : 417 - 421
  • [5] Busemann functions on the Wasserstein space
    Zhu, Guomin
    Li, Wen-Long
    Cui, Xiaojun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [6] Busemann functions in a harmonic manifold
    Ranjan, A
    Shah, H
    GEOMETRIAE DEDICATA, 2003, 101 (01) : 167 - 183
  • [7] BUSEMANN FUNCTIONS AND TOTAL CURVATURE
    SHIOHAMA, K
    INVENTIONES MATHEMATICAE, 1979, 53 (03) : 281 - 297
  • [8] Busemann Functions in a Harmonic Manifold
    Akhil Ranjan
    Hemangi Shah
    Geometriae Dedicata, 2003, 101 : 167 - 183
  • [9] Busemann functions on the Wasserstein space
    Guomin Zhu
    Wen-Long Li
    Xiaojun Cui
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [10] AFFINE FUNCTIONS AND BUSEMANN FUNCTIONS ON COMPLETE FINSLER MANIFOLDS
    Innami, Nobuhiro
    Itokawa, Yoe
    Nagano, Tetsuya
    Shiohama, Katsuhiro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1723 - 1732