On Spaces Star Determined by Compact Metrizable Subspaces

被引:0
|
作者
Xuan, Wei-Feng [1 ]
Song, Yan-Kui [2 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
关键词
Star-CM; Star countable; Star compact; g-Function;
D O I
10.1007/s41980-019-00230-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A space X is said to be star determined by compact metrizable subspaces (star-CM for short) if for any open cover U of X there is a compact and metrizable subspace Y subset of X such that St(Y,U)=X. This notation of star-CM was introduced by van Mill, Tkachuk and Wilson in (Topol Appl 154:2127-2134, 2007). In this paper, we investigate the relations between star-CM spaces and related spaces, and study topological properties of star-CM spaces. We also establish a cardinal theorem for star-CM spaces with symmetric g-functions.
引用
收藏
页码:1795 / 1803
页数:9
相关论文
共 50 条
  • [1] On Spaces Star Determined by Compact Metrizable Subspaces
    Wei-Feng Xuan
    Yan-Kui Song
    [J]. Bulletin of the Iranian Mathematical Society, 2019, 45 : 1795 - 1803
  • [2] Metrizable subspaces of representation spaces
    Charatonik, Wlodzimierz J.
    Insall, Matt
    Michalik, Daria
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2023, 325
  • [3] COMPACT METRIZABLE SPACES
    ALAS, OT
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 50 (01): : 1 - &
  • [4] Spaces determined by countably many locally compact subspaces
    Lawson, Jimmie
    Xu, Xiaoquan
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2024, 354
  • [5] The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces
    Charalambous, MG
    [J]. FUNDAMENTA MATHEMATICAE, 2004, 182 (01) : 41 - 52
  • [6] RECONSTRUCTING COMPACT METRIZABLE SPACES
    Gartside, Paul
    Pitz, Max F.
    Suabedissen, Rolf
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 429 - 443
  • [7] ON METRIZABLE REMAINDERS OF LOCALLY COMPACT SEPARABLE METRIZABLE SPACES
    Chatyrko, Vitalij A.
    Karassev, Alexandre
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (03): : 1067 - 1081
  • [8] SOME REMARKS ON SEMI-METRIZABLE SPACES AND THEIR SUBSPACES
    ARHANGELSKII, AV
    NEDEV, SJ
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (05): : 499 - 500
  • [9] LASNEV SPACES WHICH CONTAIN DENSE METRIZABLE SUBSPACES
    VANDOREN, KR
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A344 - A344
  • [10] Compact monotonically metacompact spaces are metrizable
    Chase, Timothy
    Gruenhage, Gary
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (01) : 45 - 49