A Flexible Precision Multi-Format In-Memory Vector Matrix Multiplication Engine in 65 nm CMOS With RF Machine Learning Support

被引:1
|
作者
Mukherjee, Mandovi [1 ]
Long, Yun [1 ]
Woo, Jongseok [1 ]
Kim, Daehyun [1 ]
Rahman, Nael Mizanur [1 ]
Dash, Saurabh [1 ]
Mukhopadhyay, Saibal [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2020年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
Accelerators; processing-in-memory (PIM); radio-frequency (RF) machine learning (ML); vector matrix multiplication (VMM);
D O I
10.1109/LSSC.2020.3023703
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An all-digital flexible precision in-memory accelerator for vector matrix multiplication (VMM) is demonstrated in 65 nm CMOS. The design supports flexible precision, floating point, and complex numbers enabling in-memory radio-frequency machine learning and signal processing computation. The measured compute efficiency normalized to memory size is 34 GOPS/W/KB.
引用
收藏
页码:450 / 453
页数:4
相关论文
共 1 条
  • [1] Yun: An Open-Source, 64-Bit RISC-V-Based Vector Processor With Multi-Precision Integer and Floating-Point Support in 65-nm CMOS
    Perotti, Matteo
    Cavalcante, Matheus
    Ottaviano, Alessandro
    Liu, Jiantao
    Benini, Luca
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (10) : 3732 - 3736