Critical parameters in cultivation of experimental biofilms using the example of Pseudomonas fluorescens

被引:1
|
作者
Reddersen, Kirsten [1 ]
Guellmar, Andre [2 ]
Tonndorf-Martini, Silke [2 ]
Sigusch, Bernd W. [2 ]
Ewald, Andrea [3 ]
Dauben, Thomas J. [4 ]
Martin, Karin [5 ]
Wiegand, Cornelia [1 ]
机构
[1] Univ Klinikum Jena, Klin Hautkrankheiten, Jena, Germany
[2] Univ Klinikum Jena, Poliklin Konservierende Zahnheilkunde & Parodonto, Jena, Germany
[3] Univ Klinikum Wurzburg, Lehrstuhl Funkt Werkstoffe Med & Zahnheilkunde, Wurzburg, Germany
[4] Otto Schott Inst Mat Forsch, Lehrstuhl Mat Wissensch, Jena, Germany
[5] Leibnitz Inst Naturstoff Forsch & Infektionsbiol, Hans Knoll Inst, Jena, Germany
关键词
BACTERIAL ADHESION; RESISTANCE; INOCULUM;
D O I
10.1007/s10856-021-06568-w
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Formation and treatment of biofilms present a great challenge for health care and industry. About 80% of human infections are associated with biofilms including biomaterial centered infections, like infections of prosthetic heart valves, central venous catheters, or urinary catheters. Additionally, biofilms can cause food and drinking water contamination. Biofilm research focusses on application of experimental biofilm models to study initial adherence processes, to optimize physico-chemical properties of medical materials for reducing interactions between materials and bacteria, and to investigate biofilm treatment under controlled conditions. Exploring new antimicrobial strategies plays a key role in a variety of scientific disciplines, like medical material research, anti-infectious research, plant engineering, or wastewater treatment. Although a variety of biofilm models exist, there is a lack of standardization for experimental protocols, and designing experimental setups remains a challenge. In this study, a number of experimental parameters critical for material research have been tested that influence formation and stability of an experimental biofilm using the non-pathogenic model strain of Pseudomonas fluorescens. These parameters include experimental time frame, nutrient supply, inoculum concentration, static and dynamic cultivation conditions, material properties, and sample treatment during staining for visualization of the biofilm. It was shown, that all tested parameters critically influence the experimental biofilm formation process. The results obtained in this study shall support material researchers in designing experimental biofilm setups. [GRAPHICS] .
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Critical parameters in cultivation of experimental biofilms using the example of Pseudomonas fluorescens
    Kirsten Reddersen
    André Güllmar
    Silke Tonndorf-Martini
    Bernd W. Sigusch
    Andrea Ewald
    Thomas J. Dauben
    Karin Martin
    Cornelia Wiegand
    Journal of Materials Science: Materials in Medicine, 2021, 32
  • [2] Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms
    Vikram, Amit
    Bomberger, Jennifer M.
    Bibby, Kyle J.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2015, 59 (06) : 3433 - 3440
  • [3] Influence of Flow Velocity on the Characteristics of Pseudomonas fluorescens Biofilms
    Araujo, Paula A.
    Malheiro, Joana
    Machado, Idalina
    Mergulhao, Filipe
    Melo, Luis
    Simoes, Manuel
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2016, 142 (07)
  • [4] Integration and decontamination of Bacillus cereus in Pseudomonas fluorescens biofilms
    Altman, S. J.
    McGrath, L. K.
    Souza, C. A.
    Murton, J. K.
    Camper, A. K.
    JOURNAL OF APPLIED MICROBIOLOGY, 2009, 107 (01) : 287 - 299
  • [5] Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms
    Charlton, Samuel G. V.
    Jana, Saikat
    Chen, Jinju
    BIOFILM, 2024, 8
  • [6] The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms
    Simoes, Manuel
    Pereira, Maria O.
    Sillankorva, Sanna
    Azeredo, Joana
    Vieira, Maria J.
    BIOFOULING, 2007, 23 (04) : 249 - 258
  • [7] Adhesion of Pseudomonas fluorescens biofilms to glass, stainless steel and cellulose
    Dagang, W. R. Z. Wan
    Bowen, J.
    O'Keeffe, J.
    Robbins, P. T.
    Zhang, Z.
    BIOTECHNOLOGY LETTERS, 2016, 38 (05) : 787 - 792
  • [8] Adhesion of Pseudomonas fluorescens biofilms to glass, stainless steel and cellulose
    W. R. Z. Wan Dagang
    J. Bowen
    J. O’Keeffe
    P. T. Robbins
    Z. Zhang
    Biotechnology Letters, 2016, 38 : 787 - 792
  • [9] Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress
    Jara, Josue
    Alarcon, Francisco
    Monnappa, Ajay K.
    Santos, Jose Ignacio
    Bianco, Valentino
    Nie, Pin
    Ciamarra, Massimo Pica
    Canales, Angeles
    Dinis, Luis
    Lopez-Montero, Ivan
    Valeriani, Chantal
    Orgaz, Belen
    FRONTIERS IN MICROBIOLOGY, 2021, 11
  • [10] Effect of clay particles on the behaviour of biofilms formed by Pseudomonas fluorescens
    Vieira, MJ
    Melo, LF
    WATER SCIENCE AND TECHNOLOGY, 1995, 32 (08) : 45 - 52