Analysis of SMOS sea surface salinity data using DINEOF

被引:55
|
作者
Alvera-Azcarate, Aida [1 ]
Barth, Alexander [1 ,2 ]
Parard, Gaelle [1 ]
Beckers, Jean-Marie [1 ]
机构
[1] Univ Liege, AGO GHER MARE, Allee Six Aout 17, B-4000 Liege, Belgium
[2] FRS FNRS Natl Fund Sci Res, Brussels, Belgium
关键词
SATELLITE DATA; AMAZON PLUME; OCEAN; RECONSTRUCTION; TEMPERATURE;
D O I
10.1016/j.rse.2016.02.044
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An analysis of daily Sea Surface Salinity (SSS) at 0.15 degrees x 0.15 degrees spatial resolution from the Soil Moisture and Ocean Salinity (SMOS) satellite mission using DINEOF (Data Interpolating Empirical Orthogonal Functions) is presented. DINEOF allows reconstructing missing data using a truncated EOF basis, while reducing the amount of noise and errors in geophysical datasets. This work represents a first application of DINEOF to SMOS SSS. Results show that a reduction of the error and the amount of noise is obtained in the DINEOF SSS data compared to the initial SMOS SSS data. Errors associated to the edge of the swath are detected in 2 EOFs and effectively removed from the final data, avoiding removing the data at the edges of the swath in the initial dataset. The final dataset presents a centered root mean square error of 0.2 in open waters when comparing with thermosalinograph data at their original spatial and temporal resolution. Constant biases present near land masses, large scale biases and latitudinal biases cannot be corrected with DINEOF because persistent signals are retained in high order EOFs, and therefore these need to be corrected separately. The signature of the Douro and Gironde rivers is detected in the DINEOF SSS. The minimum SSS observed in the Gironde plume corresponds to a flood event in June 2013, and the shape and size of the Douro river shows a good agreement with chlorophyll-a satellite data. These examples show the capacity of DINEOF to remove noise and provide a full SSS dataset at a high temporal and spatial resolution with reduced error, and the possibility to retrieve physical signals in zones with high initial errors. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [1] SMOS first data analysis for sea surface salinity determination
    Font, Jordi
    Boutin, Jacqueline
    Reul, Nicolas
    Spurgeon, Paul
    Ballabrera-Poy, Joaquim
    Chuprin, Andrei
    Gabarro, Carolina
    Gourrion, Jerome
    Guimbard, Sebastien
    Henocq, Claire
    Lavender, Samantha
    Martin, Nicolas
    Martinez, Justino
    McCulloch, Michael
    Meirold-Mautner, Ingo
    Mugerin, Cesar
    Petitcolin, Francois
    Portabella, Marcos
    Sabia, Roberto
    Talone, Marco
    Tenerelli, Joseph
    Turiel, Antonio
    Vergely, Jean-Luc
    Waldteufel, Philippe
    Yin, Xiaobin
    Zine, Sonia
    Delwart, Steven
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (9-10) : 3654 - 3670
  • [2] Sea Ice Meltwater in the Beaufort Gyre: A Comprehensive Analysis Using Sea Surface Salinity Data From SMOS
    De Andres, Eva
    Umbert, Marta
    Sanchez-Urrea, Maria
    Gonzalez-Gambau, Veronica
    Olmedo, Estrella
    Gabarro, Carolina
    Elosegui, Pedro
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2025, 130 (03)
  • [3] New sea surface salinity retrieval methods based on SMOS data
    Wang, Zhenzhan
    Tong, Xiaolin
    Lu, Hongli
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (11-12) : 4371 - 4382
  • [4] Multi-dimensional interpolation of SMOS sea surface salinity with surface temperature and in situ salinity data
    Nardelli, B. Buongiorno
    Droghei, R.
    Santoleri, R.
    REMOTE SENSING OF ENVIRONMENT, 2016, 180 : 392 - 402
  • [5] Interannual anomalies of SMOS sea surface salinity
    Boutin, J.
    Martin, N.
    Kolodziejczyk, N.
    Reverdin, G.
    REMOTE SENSING OF ENVIRONMENT, 2016, 180 : 128 - 136
  • [6] Sea surface salinity retrieval for the SMOS mission using neural networks
    Ammar, Adel
    Labroue, Sylvie
    Obligis, Estelle
    Mejia, Carlos E.
    Crepon, Michel
    Thiria, Sylvie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03): : 754 - 764
  • [7] BAYESIAN STATISTICAL MODELS OF SEA SURFACE SALINITY BASED ON SMOS SATELLITE DATA
    Zhao, Hong
    Li, Changjun
    Li, Hongping
    Han, Xiao
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3556 - 3559
  • [8] INFRARED SEA SURFACE TEMPERATURE DATA RECONSTRUCTION USING DINEOF METHOD
    Li, Jiang
    Sun, Weifu
    Zhang, Jie
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7107 - 7110
  • [9] Retrieve Sea Surface Salinity Using Principal Component Regression Model Based on SMOS Satellite Data
    ZHAO Hong
    LI Changjun
    LI Hongping
    LV Kebo
    ZHAO Qinghui
    JournalofOceanUniversityofChina, 2016, 15 (03) : 399 - 406
  • [10] Retrieve sea surface salinity using principal component regression model based on SMOS satellite data
    Zhao Hong
    Li Changjun
    Li Hongping
    Lv Kebo
    Zhao Qinghui
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2016, 15 (03) : 399 - 406