A posteriori error estimators for linear reduced-order models using Krylov-based integrators

被引:13
|
作者
Amsallem, D. [1 ]
Hetmaniuk, U. [2 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
projection-based model reduction; Petrov-Galerkin projection; error estimation; Krylov-based integrator; off-line; online decomposition; PROPER ORTHOGONAL DECOMPOSITION; COMPUTATIONAL-FLUID-DYNAMICS; REAL-TIME SOLUTION; BASIS APPROXIMATION; REDUCTION; EQUATIONS; SYSTEMS;
D O I
10.1002/nme.4753
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced-order models for linear time-invariant dynamical systems are considered, and the error between the full-order model and the reduced-order model solutions is characterized. Based on the analytical representation of the error, an a posteriori error indicator is proposed that combines a Krylov-based exponential integrator and an a posteriori residual-based estimate. Numerical experiments illustrate the quality of the error estimator. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1238 / 1261
页数:24
相关论文
共 50 条
  • [1] Reduced-order modeling of multiscreen frequency-selective surfaces using Krylov-based rational interpolation
    Weile, DS
    Michielssen, E
    Gallivan, K
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (05) : 801 - 813
  • [2] A Posteriori Error Bounds for Krylov-Based Fast Frequency Sweeps of Finite-Element Systems
    Konkel, Yves
    Farle, Ortwin
    Sommer, Alexander
    Burgard, Stefan
    Dyczij-Edlinger, Romanus
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 441 - 444
  • [3] Exploration of efficient reduced-order modeling and a posteriori error estimation
    Chaudhry, J. H.
    Estep, D.
    Gunzburger, M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 111 (02) : 103 - 122
  • [4] Krylov-based order reduction using Laguerre series expansion
    Eid, Rudy
    Salimbahrami, Behnam
    Lohmann, Boris
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2008, 14 (05) : 435 - 449
  • [5] SOME A POSTERIORI ERROR BOUNDS FOR REDUCED-ORDER MODELLING OF (NON-)PARAMETRIZED LINEAR SYSTEMS
    Feng, Lihong
    Antoulas, Athanasios C.
    Benner, Peter
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (06): : 2127 - 2158
  • [6] Reduced-order modelling of large linear passive circuits using Krylov projection method
    Dumitriu, Lucia
    Iordache, Mihai
    [J]. ECCSC 08: 4TH EUROPEAN CONFERENCE ON CIRCUITS AND SYSTEMS FOR COMMUNICATIONS, 2008, : 146 - 151
  • [7] A novel reduced-order algorithm for rational models based on Arnoldi process and Krylov subspace
    Chen, Jing
    Huang, Biao
    Gan, Min
    Chen, C. L. Philip
    [J]. AUTOMATICA, 2021, 129
  • [8] Generating nearly optimally compact models from Krylov-subspace based reduced-order models
    Kamon, M
    Wang, F
    White, J
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2000, 47 (04) : 239 - 248
  • [9] Gradient-based constrained optimization using a database of linear reduced-order models
    Choi, Youngsoo
    Boncoraglio, Gabriele
    Anderson, Spenser
    Amsallem, David
    Farhat, Charbel
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423
  • [10] Error estimation for reduced-order models of dynamical systems
    Homescu, Chris
    Petzold, Linda R.
    Serban, Radu
    [J]. SIAM REVIEW, 2007, 49 (02) : 277 - 299