Duality in the max-algebra

被引:0
|
作者
Wagneur, E [1 ]
机构
[1] Univ Nantes, Inst Rech Cybernet Nantes, UMR 6597, Joint Res Unit,Ecole Mines,Ecole Cent, F-44321 Nantes 03, France
关键词
discrete event; max-algebra; linear dual; Riesz representation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider here the "linear" dual Hom(M,R) of a R-max semimodule M. This dual is also a R-max semimodule, which is not isomorphic to M in general. Also, we give a necessary condition for the Riesz representation theorem to hold in this context. Copyright (C) 1998 IFAC..
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [1] Bases in max-algebra
    Cuninghame-Green, RA
    Butkovic, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 : 107 - 120
  • [2] Controllability in the max-algebra
    Prou, JM
    Wagneur, E
    [J]. KYBERNETIKA, 1999, 35 (01) : 13 - 24
  • [3] Max-algebra: the linear algebra of combinatorics?
    Butkovic, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 (367) : 313 - 335
  • [4] Matrix period in max-algebra
    Molnárová, M
    Pribis, J
    [J]. DISCRETE APPLIED MATHEMATICS, 2000, 103 (1-3) : 167 - 175
  • [5] On the combinatorial aspects of max-algebra
    Butkovic, P
    [J]. Idempotent Mathematics and Mathematical Physics, 2005, 377 : 93 - 103
  • [6] Generalised eigenproblem in max-algebra
    Cuninghame-Green, R. A.
    Butkovic, P.
    [J]. WODES' 08: PROCEEDINGS OF THE 9TH INTERNATIONAL WORKSHOP ON DISCRETE EVENT SYSTEMS, 2008, : 236 - 241
  • [7] On matrix powers in max-algebra
    Butkovic, P.
    Cuninghame-Green, R. A.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) : 370 - 381
  • [8] On eigenproblem for circulant matrices in max-algebra
    Plávka, J
    [J]. OPTIMIZATION, 2001, 50 (5-6) : 477 - 483
  • [9] Goldbach’s conjecture in max-algebra
    Szabó P.
    [J]. Computational Management Science, 2017, 14 (1) : 81 - 89
  • [10] Max-algebra and pairwise comparison matrices
    Elsner, L
    van den Driessche, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 (1-3) : 47 - 62