Improving fuzzy cognitive maps learning through memetic particle swarm optimization

被引:28
|
作者
Petalas, Y. G. [1 ]
Parsopoulos, K. E. [1 ]
Vrahatis, M. N. [1 ]
机构
[1] Univ Patras, UPAIRC, Dept Math, CI Lab, GR-26110 Patras, Greece
关键词
fuzzy cognitive maps; memetic algorithms; particle swarm optimization; local search; machine learning; GLOBAL OPTIMIZATION; ALGORITHMS; CONVERGENCE; COMPUTATION; SEARCH;
D O I
10.1007/s00500-008-0311-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy cognitive maps constitute a neuro-fuzzy modeling methodology that can simulate complex systems accurately. Although their configuration is defined by experts, learning schemes based on evolutionary and swarm intelligence algorithms have been employed for improving their efficiency and effectiveness. This paper comprises an extensive study of the recently proposed swarm intelligence memetic algorithm that combines particle swarm optimization with both deterministic and stochastic local search schemes, for fuzzy cognitive maps learning tasks. Also, a new technique for the adaptation of the memetic schemes, with respect to the available number of function evaluations per application of the local search, is proposed. The memetic learning schemes are applied on four real-life problems and compared with established learning methods based on the standard particle swarm optimization, differential evolution, and genetic algorithms, justifying their superiority.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 50 条
  • [1] Improving fuzzy cognitive maps learning through memetic particle swarm optimization
    Y. G. Petalas
    K. E. Parsopoulos
    M. N. Vrahatis
    [J]. Soft Computing, 2009, 13
  • [2] Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization
    Elpiniki I. Papageorgiou
    Konstantinos E. Parsopoulos
    Chrysostomos S. Stylios
    Petros P. Groumpos
    Michael N. Vrahatis
    [J]. Journal of Intelligent Information Systems, 2005, 25 : 95 - 121
  • [3] Fuzzy cognitive maps learning using particle swarm optimization
    Papageorgiou, EI
    Parsopoulos, KE
    Stylios, C
    Groumpos, PP
    Vrahatis, MN
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2005, 25 (01) : 95 - 121
  • [4] A first study of Fuzzy Cognitive Maps learning using particle swarm optimization
    Parsopoulos, KE
    Papageorgiou, EI
    Groumpos, PP
    Vrahatis, MN
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1440 - 1447
  • [5] Fuzzy cognitive maps learning through swarm intelligence
    Papageorgiou, EI
    Parsopoulos, KE
    Groumpos, PP
    Vrahatis, MN
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 344 - 349
  • [6] Enhanced Learning in Fuzzy Simulation Models Using Memetic Particle Swarm Optimization
    Petalas, Y. G.
    Parsopoulos, K. E.
    Papageorgiou, E.
    Groumpos, P. P.
    Vrahatis, M. N.
    [J]. 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 16 - +
  • [7] A Competent Memetic Algorithm for Learning Fuzzy Cognitive Maps
    Acampora, Giovanni
    Pedrycz, Witold
    Vitiello, Autilia
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (06) : 2397 - 2411
  • [8] Fuzzy cognitive maps learning using memetic algorithms
    Petalas, Y. G.
    Papageorgiou, E. I.
    Parsopoulos, K. E.
    Groumpos, P. P.
    Vrahatis, M. N.
    [J]. ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 1420 - 1423
  • [9] Particle Swarm Optimization Approach for Fuzzy Cognitive Maps Applied to Autism Classification
    Oikonomou, Panagiotis
    Papageorgiou, Elpiniki I.
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 516 - 526
  • [10] Memetic particle swarm optimization
    Petalas, Y. G.
    Parsopoulos, K. E.
    Vrahatis, M. N.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2007, 156 (01) : 99 - 127