A nonlinear approach to modeling climatological time series

被引:5
|
作者
Matyasovszky, I [1 ]
机构
[1] Eotvos Lorand Univ, Dept Meteorol, H-1117 Budapest, Hungary
关键词
Model Estimation; Model Check; Nonlinear Model; Main Step; Moving Average;
D O I
10.1007/s007040170020
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Autoregressive moving average (ARMA) processes are frequently used to model climatological time series. These tools form a broad segment of the class of linear stochastic processes. This paper summarizes formulation of nonlinear models and gives a review of a best developed type of nonlinearity. The main steps of model fitting, i.e. test for nonlinearity, model estimation, and model checking are described. The methodology is applied to Central England annual mean temperature data. A threshold autoregressive model, a piecewise constant approximation to nonlinearity, delivers a statistically significant gain over the best fitting AR model. The forecasting function has three stable points and one limit cycle related to quasi-biennial oscillation.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 50 条
  • [1] A nonlinear approach to modeling climatological time series
    I. Matyasovszky
    [J]. Theoretical and Applied Climatology, 2001, 69 : 139 - 147
  • [2] A unified approach to estimating and modeling linear and nonlinear time series
    Chen, CWS
    McCulloch, RE
    Tsay, RS
    [J]. STATISTICA SINICA, 1997, 7 (02) : 451 - 472
  • [3] AN APPROACH TO ADJUSTING CLIMATOLOGICAL TIME-SERIES FOR DISCONTINUOUS INHOMOGENEITIES
    KARL, TR
    WILLIAMS, CN
    [J]. JOURNAL OF CLIMATE AND APPLIED METEOROLOGY, 1987, 26 (12): : 1744 - 1763
  • [4] Modeling multiple nonlinear time series: A graphical approach to the transfer function
    Hoffmann, RG
    [J]. AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1996, : 271 - 275
  • [5] Local global neural networks:: A new approach for nonlinear time series modeling
    Suárez-Fariñas, M
    Pedreira, CE
    Medeiros, MC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1092 - 1107
  • [6] Statistical Characterization and Modeling of Raindrop Spectra Time Series for Different Climatological Regions
    Montopoli, Mario
    Marzano, Frank Silvio
    Vulpiani, Gianfranco
    Anagnostou, Marios N.
    Anagnostou, Emmanouil N.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 2778 - 2787
  • [7] Correlation and multifractality in climatological time series
    Pedron, I. T.
    [J]. XI LATIN AMERICAN WORKSHOP ON NONLINEAR PHENOMENA, 2010, 246
  • [8] PREWHITENING OF CLIMATOLOGICAL TIME-SERIES
    FUENZALIDA, H
    ROSENBLUTH, B
    [J]. JOURNAL OF CLIMATE, 1990, 3 (03) : 382 - 393
  • [9] Nonlinear Trigonometric Transformation Time Series Modeling
    Bashiru, K. A.
    Olowofeso, O. E.
    Owabumoye, S. A.
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (02) : 470 - 479
  • [10] A reduced structure for nonlinear modeling of time series
    Bianchini, G
    Genesio, R
    Nitti, M
    [J]. CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, 2000, : 384 - 387