Similarity measure based on piecewise linear approximation and derivative dynamic time warping for time series mining

被引:36
|
作者
Li, Haili [1 ]
Guo, Chonghui [1 ]
Qiu, Wangren [2 ]
机构
[1] Dalian Univ Technol, Inst Syst Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Res Ctr Informat & Control, Dalian 116024, Peoples R China
关键词
Similarity measure; Dynamic time warping; Piecewise linear approximation; Time series mining;
D O I
10.1016/j.eswa.2011.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new method to calculate the similarity of time series based on piecewise linear approximation (PLA) and derivative dynamic time warping (DDTW). The proposed method includes two phases. One is the divisive approach of piecewise linear approximation based on the middle curve of original time series. Apart from the attractive results, it can create line segments to approximate time series faster than conventional linear approximation. Meanwhile, high dimensional space can be reduced into a lower one and the line segments approximating the time series are used to calculate the similarity. In the other phase, we utilize the main idea of DDTW to provide another similarity measure based on the line segments just we got from the first phase. We empirically compare our new approach to other techniques and demonstrate its superiority. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14732 / 14743
页数:12
相关论文
共 50 条
  • [1] Similarity Measure for Time Series Based on Piecewise Linear Approximation
    Li, Guiling
    Wang, Yuanzhen
    Zhang, Liping
    Zhu, Xiaolian
    2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 929 - +
  • [2] Similarity Measure for Multivariate Time Series Based on Dynamic Time Warping
    Li, Zheng-xin
    Li, Ke-wu
    Wu, Hu-sheng
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING (ICIIP'16), 2016,
  • [3] Piecewise statistic approximation based similarity measure for time series
    Cai, Qinglin
    Chen, Ling
    Sun, Jianling
    KNOWLEDGE-BASED SYSTEMS, 2015, 85 : 181 - 195
  • [4] Multivariate Time Series Similarity Measure Based on Weighted Dynamic Time Warping
    Zhao, Jinhui
    Ju, Rusheng
    Xie, Xu
    Ye, Yanqing
    PROCEEDINGS OF 2020 2ND INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MACHINE VISION AND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND MACHINE LEARNING, IPMV 2020, 2020, : 173 - 179
  • [5] Similarity Measure Based on Incremental Warping Window for Time Series Data Mining
    Li, Hailin
    Wang, Cheng
    IEEE ACCESS, 2019, 7 : 3909 - 3917
  • [6] A Shape Based Similarity Measure for Time Series Classification with Weighted Dynamic Time Warping Algorithm
    Ye, Yanqing
    Niu, Caiyun
    Jiang, Jiang
    Ge, Bingfeng
    Yang, Kewei
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 104 - 109
  • [7] Fast Constrained Dynamic Time Warping for Similarity Measure of Time Series Data
    Choi, Wonyoung
    Cho, Jaechan
    Lee, Seongjoo
    Jung, Yunho
    IEEE ACCESS, 2020, 8 : 222841 - 222858
  • [8] Mixed dissimilarity measure for piecewise linear approximation based time series applications
    Banko, Zoltan
    Abonyi, Janos
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (21) : 7664 - 7675
  • [9] Method of Time Series Similarity Measurement Based on Dynamic Time Warping
    Liu, Lianggui
    Li, Wei
    Jia, Huiling
    CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 57 (01): : 97 - 106
  • [10] SIGNAL TO NOISE RATIO EVALUATION IN SIGNAL AVERAGED ECG BY DERIVATIVE DYNAMIC TIME WARPING AND PIECEWISE LINEAR APPROXIMATION
    Avitia, Roberto L.
    Reyna, Marco A.
    Bravo, Miguel E.
    Cetto, Lucio A.
    BIODEVICES 2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON BIOMEDICAL ELECTRONICS AND DEVICES, 2010, : 201 - 205