Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques

被引:38
|
作者
de Korte, Chris L. [1 ]
Fekkes, Stein [1 ]
Nederveen, Aart J. [2 ]
Manniesing, Rashindra [3 ]
Hansen, Hendrik H. G. [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Med UltraSound Imaging Ctr, NL-6525 GA Nijmegen, Netherlands
[2] Amsterdam Med Ctr, Dept Radiol, NL-6525 GA Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Diagnost Image Anal Grp, NL-6525 GA Nijmegen, Netherlands
关键词
Acoustic radiation force impulse (ARFI); artery; elastography; plaque; pulse wave velocity (PWV); shear wave imaging (SWI); ACOUSTIC RADIATION FORCE; SHEAR-WAVE ELASTOGRAPHY; INTRAVASCULAR ULTRASOUND ELASTOGRAPHY; IN-VIVO CHARACTERIZATION; NONINVASIVE MATERIAL CHARACTERIZATION; INTIMA-MEDIA THICKNESS; EX-VIVO; HISTOPATHOLOGICAL CORRELATION; COMPUTED-TOMOGRAPHY; CARDIOVASCULAR RISK;
D O I
10.1109/TUFFC.2016.2572260
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
引用
收藏
页码:1613 / 1623
页数:11
相关论文
共 50 条
  • [1] GAMMA SCANNING OF ATHEROSCLEROTIC PLAQUES IN CAROTID ARTERIES
    METTINGER, KL
    LARSSON, S
    [J]. LANCET, 1978, 1 (8076): : 1267 - 1267
  • [2] DETERMINANTS OF ATHEROSCLEROTIC PLAQUES IN THE CAROTID AND FEMORAL ARTERIES
    HENSE, HW
    KONIG, W
    HELLER, WD
    SENNEWALD, E
    GOSTOMZYK, J
    KEIL, U
    [J]. NIEREN-UND HOCHDRUCKKRANKHEITEN, 1994, 23 (10) : 503 - 506
  • [3] Prognosis of the elderly with asymptomatic atherosclerotic plaques of the carotid arteries
    Iwamoto, T
    Jingzi, J
    Sugiyama, T
    Umahara, T
    Takasaki, M
    [J]. INTERNAL MEDICINE, 2002, 41 (07) : 526 - 531
  • [4] Morphometric Analysis of Atherosclerotic Plaques in Human Carotid Arteries
    Shishkina, V. S.
    Kashirina, S. V.
    Sirotkin, V. N.
    Il'inskaya, O. P.
    Tararak, E. M.
    [J]. BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2012, 152 (05) : 642 - 645
  • [5] Morphometric Analysis of Atherosclerotic Plaques in Human Carotid Arteries
    V. S. Shishkina
    S. V. Kashirina
    V. N. Sirotkin
    O. P. Il’inskaya
    E. M. Tararak
    [J]. Bulletin of Experimental Biology and Medicine, 2012, 152 : 642 - 645
  • [6] Association Between Structure of Atherosclerotic Plaques in Carotid Arteries and Myocardial Infarction
    Gaigalaite, V.
    Ozeraitiene, V.
    Kalibatiene, D.
    Laurikenas, K.
    Sabaliauskiene, Z.
    [J]. KARDIOLOGIYA, 2013, 53 (09) : 21 - 25
  • [7] Structure of atherosclerotic plaques of carotid arteries in correlation with risk factors for atherosclerosis
    Jovanovic, Z. B.
    Pavlovic, A. M.
    Trajkovic, J. J. Zidverc
    Mijajlovic, M. D.
    Sternic, N. M.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2005, 12 : 45 - 45
  • [8] Paramagnetic centers in atherosclerotic plaques of carotid arteries as indicators of their content and stability
    Usachev, K.
    Mamin, G.
    Gafurov, M.
    Ignat'ev, I.
    Kamaltdinov, R.
    Salakhov, M.
    Murzakhanov, F.
    Kiiamov, A.
    Osin, Y.
    Chelyshev, Y.
    Orlinskii, S.
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2018, 48 : 137 - 137
  • [9] QUANTIFICATION OF ATHEROSCLEROTIC PLAQUES IN CAROTID ARTERIES BY 3-DIMENSIONAL ULTRASOUND
    DELCKER, A
    DIENER, HC
    [J]. BRITISH JOURNAL OF RADIOLOGY, 1994, 67 (799): : 672 - 678
  • [10] Search for Chlamydia pneumoniae genes and their expression in atherosclerotic plaques of carotid arteries
    Valassina, M
    Migliorini, L
    Sansoni, A
    Sani, G
    Corsaro, D
    Cusi, MG
    Valensin, PE
    Cellesi, C
    [J]. JOURNAL OF MEDICAL MICROBIOLOGY, 2001, 50 (03) : 228 - 232