Impact induced surface heating by planetesimals on early Mars

被引:19
|
作者
Maindl, T. I. [1 ]
Dvorak, R. [1 ]
Lammer, H. [2 ]
Guedel, M. [1 ]
Schaefer, C. [3 ]
Speith, R. [4 ]
Odert, P. [5 ]
Erkaev, N. V. [6 ,7 ]
Kislyakova, K. G.
Pilat-Lohinger, E. [5 ]
机构
[1] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria
[2] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[3] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany
[4] Univ Tubingen, Inst Phys, D-72076 Tubingen, Germany
[5] Graz Univ, IGAM, Inst Phys, A-8010 Graz, Austria
[6] Russian Acad Sci, Inst Computat Modelling, Krasnoyarsk 660041 36, Russia
[7] Siberian Fed Univ, Krasnoyarsk 660041, Russia
来源
ASTRONOMY & ASTROPHYSICS | 2015年 / 574卷
基金
奥地利科学基金会;
关键词
planets and satellites: formation; planets and satellites: terrestrial planets; planets and satellites: atmospheres; stars: solar-type; Sun: UV radiation; celestial mechanics; HYDRODYNAMIC ESCAPE; MASS FRACTIONATION; MAGMA OCEAN; EARLY EARTH; EVOLUTION; HYDROGEN; WATER; ATMOSPHERES; TIME; SIMULATION;
D O I
10.1051/0004-6361/201424256
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and extreme-ultraviolet (EUV) flux of the young Sun. Methods. Impact statistics in terms of number, masses, velocities, and angles of asteroid impacts onto early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and the resulting surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. Results. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is probably sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within similar to 0.6 Myr after its formation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] CUMULATIVE IMPACT HEATING OF PLANETESIMALS
    Davison, T. M.
    Collins, G. S.
    Ciesla, F.
    O'Brien, D. P.
    [J]. METEORITICS & PLANETARY SCIENCE, 2010, 45 : A43 - A43
  • [2] The role of impact and radiogenic heating in the early thermal evolution of Mars
    S Sahijpal
    G K Bhatia
    [J]. Journal of Earth System Science, 2015, 124 : 241 - 260
  • [3] The role of impact and radiogenic heating in the early thermal evolution of Mars
    Sahijpal, S.
    Bhatia, G. K.
    [J]. JOURNAL OF EARTH SYSTEM SCIENCE, 2015, 124 (01) : 241 - 260
  • [4] Light Induced Erosion of Dusty Planetesimals and Mars: μg Experiments
    de Beule, C.
    Kelling, T.
    Wurm, G.
    Teiser, J.
    Jankowski, T.
    [J]. INTERNATIONAL SYMPOSIUM ON PHYSICAL SCIENCES IN SPACE, 2011, 327
  • [5] Impact-induced hydrothermal activity on early Mars
    Abramov, O
    Kring, DA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2005, 110 (E12) : 1 - 19
  • [6] Impact Induced Oxidation and Its Implications for Early Mars Climate
    Pan, Lu
    Deng, Zhengbin
    Bizzarro, Martin
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (06)
  • [7] EFFECTS OF DUST ON THE HEATING OF MARS SURFACE AND ATMOSPHERE
    DAVIES, DW
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1979, 84 : 8289 - 8293
  • [8] Small planetesimals in a massive disk formed Mars
    Kobayashi, Hiroshi
    Dauphas, Nicolas
    [J]. ICARUS, 2013, 225 (01) : 122 - 130
  • [9] Impact ejecta-induced melting of surface ice deposits on Mars
    Weiss, David K.
    Head, James W.
    [J]. ICARUS, 2016, 280 : 205 - 233
  • [10] Testing the impact heating hypothesis for early Mars with a 3-D global climate model
    Steakley, Kathryn
    Murphy, James
    Kahre, Melinda
    Haberle, Robert
    Kling, Alexandre
    [J]. ICARUS, 2019, 330 : 169 - 188