Open core control software for surgical robots

被引:7
|
作者
Arata, Jumpei [1 ]
Kozuka, Hiroaki [1 ]
Kim, Hyung Wook [1 ]
Takesue, Naoyuki [2 ]
Vladimirov, B. [1 ]
Sakaguchi, Masamichi [1 ]
Tokuda, Junichi [3 ]
Hata, Nobuhiko [3 ]
Chinzei, Kiyoyuki [4 ]
Fujimoto, Hideo [1 ]
机构
[1] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
[2] Tokyo Metropolitan Univ, Hino, Tokyo 1910065, Japan
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Boston, MA 02115 USA
[4] AIST, Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058564, Japan
关键词
Surgical robot; Open source software; Virtual fixture;
D O I
10.1007/s11548-009-0388-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Object In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. Acutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. Materials and methods In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a "force guide" for supporting operators to perform precise manipulation by using a master-slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. Results The Open Core Control software was implemented on a surgical master-slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a "force guide" on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. Conclusion In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement "General Principles of Software Validation" or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [1] Open core control software for surgical robots
    Jumpei Arata
    Hiroaki Kozuka
    Hyung Wook Kim
    Naoyuki Takesue
    B. Vladimirov
    Masamichi Sakaguchi
    Junichi Tokuda
    Nobuhiko Hata
    Kiyoyuki Chinzei
    Hideo Fujimoto
    International Journal of Computer Assisted Radiology and Surgery, 2010, 5 : 211 - 220
  • [2] Teamplay of Robots, Software and open Control
    不详
    FLEISCHWIRTSCHAFT, 2012, 92 (11): : 64 - 65
  • [3] New Approach to the Open Loop Control for Surgical Robots Navigation
    Torres, Pedro M. B.
    Goncalves, Paulo J. S.
    Martins, Jorge M. M.
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 627 - 636
  • [4] OSCAR - An open software concept for autonomous robots
    Denneberg, V
    Fromm, P
    IECON '98 - PROCEEDINGS OF THE 24TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 1998, : 1192 - 1197
  • [5] Autonomous Navigation with Open Software Platform for Field Robots
    Post, Mark A.
    Bianco, Alessandro
    Yan, Xiu T.
    INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, ICINCO 2017, 2020, 495 : 425 - 450
  • [6] Constrained control for surgical assistant robots
    Kapoor, Ankur
    Li, Ming
    Taylor, Russell H.
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 231 - +
  • [7] A generalised software control system for industrial robots
    Morales, ER
    Ricci, M
    Dosio, A
    1998 5TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL - PROCEEDINGS: AMC '98 - COIMBRA, 1998, : 411 - 416
  • [8] AN APPROACH TO SOFTWARE ORGANIZATION FOR CONTROL OF INDUSTRIAL ROBOTS
    NAGAMATSU, I
    TOMIYAMA, T
    TANAKA, M
    KYURA, N
    JOURNAL OF ROBOTIC SYSTEMS, 1985, 2 (03): : 265 - 276
  • [9] Towards an Open Software Platform for Field Robots in Precision Agriculture
    Jensen, Kjeld
    Larsen, Morten
    Nielsen, Soren H.
    Larsen, Leon B.
    Olsen, Kent S.
    Jorgensen, Rasmus N.
    ROBOTICS, 2014, 3 (02): : 207 - 234
  • [10] A CORE SOFTWARE CONCEPT FOR INTEGRATED CONTROL
    HITT, EF
    KLUSE, M
    BRODERSON, R
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1983, 6 (03) : 215 - 217