NP-hardness and evolutionary algorithm over new formulation for a Target Set Selection problem

被引:0
|
作者
Ravelo, Santiago, V [1 ]
Meneses, Claudio N. [2 ]
Anacleto, Eduardo A. J. [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Fed Univ ABC, Ctr Math Computat & Cognit, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Target Set Selection; NP-hard; Binary Linear Program; Evolutionary algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work considers the Target Set Selection problem, which can be used to model the propagation and consumption of information, data, ideas and products through networks, with applications in marketing, medicine, sociology and bioinformatics. We propose a new version of the problem and prove it belongs to the NP-hard class. We also design an evolutionary algorithm that uses, in the crossover and mutation operators, exact solutions of sub-problems which were modeled by a new mathematical formulation. We test our approach over a benchmark of instances constructed from real-world data sets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] STRONG NP-HARDNESS OF THE QUANTUM SEPARABILITY PROBLEM
    Gharibian, Sevag
    [J]. QUANTUM INFORMATION & COMPUTATION, 2010, 10 (3-4) : 343 - 360
  • [2] NP-hardness of the cluster minimization problem revisited
    Adib, AB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (40): : 8487 - 8492
  • [3] Coping with the NP-hardness of the graph bandwidth problem
    Feige, U
    [J]. ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 10 - 19
  • [4] NP-Hardness of Some Data Cleaning Problem
    Kutnenko, O.A.
    Plyasunov, A.V.
    [J]. Journal of Applied and Industrial Mathematics, 2021, 15 (02) : 285 - 291
  • [5] NP-Hardness of the Problem of Optimal Box Positioning
    Galatenko, Alexei, V
    Nersisyan, Stepan A.
    Zhuk, Dmitriy N.
    [J]. MATHEMATICS, 2019, 7 (08)
  • [6] NP-Hardness of Some Data Cleaning Problem
    Kutnenko O.A.
    Plyasunov A.V.
    [J]. Journal of Applied and Industrial Mathematics, 2021, 15 (2) : 285 - 291
  • [7] NP-hardness of the Euclidean Max-Cut problem
    Ageev, A. A.
    Kel'manov, A. V.
    Pyatkin, A. V.
    [J]. DOKLADY MATHEMATICS, 2014, 89 (03) : 343 - 345
  • [8] A New Point of NP-Hardness for Unique Games
    O'Donnell, Ryan
    Wright, John
    [J]. STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 289 - 306
  • [9] Positional Knapsack Problem: NP-hardness and approximation scheme
    Pedrosa, Lehilton L. C.
    da Silva, Mauro R. C.
    Schouery, Rafael C. S.
    [J]. XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 400 - 402
  • [10] NP-hardness of the sorting buffer problem on the uniform metric
    Asahiro, Yuichi
    Kawahara, Kenichi
    Miyano, Eiji
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) : 1453 - 1464