Escort Tug Performance Prediction Using Computational Fluid Dynamics

被引:6
|
作者
Smoker, Brendan [1 ]
Stockdill, Bart [1 ]
Oshkai, Peter [2 ]
机构
[1] Robert Allan Ltd, Vancouver, BC, Canada
[2] Univ Victoria, Victoria, BC, Canada
来源
JOURNAL OF SHIP RESEARCH | 2016年 / 60卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
hydrodynamics (hull form); loads; boundary layer;
D O I
10.5957/JOSR.60.2.150062
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, we outline and validate a computational fluid dynamics (CFD) method for determining the hydrodynamic forces of an escort tug in indirect towing mode. We consider a range of yaw angles from 0 degrees to 90 degrees and a travel speed of 8 knots. We discuss the effects of scaling on prediction of flow separation and hydrodynamic forces acting on the vessel by carrying out CFD studies on both model and full-scale escort tugs performing indirect escort maneuvers. As the escort performance in terms of maximum steering forces is strongly dependent on the onset of flow separation from the hull and skeg of the tug, the model-scale simulations under-predict the maximum steering force by 12% relative to the full-scale simulations. In addition, we provide a method for converting the hydrodynamic forces of the CFD escort study into towline and thrust forces.
引用
收藏
页码:61 / 77
页数:17
相关论文
共 50 条
  • [1] PREDICTION OF CURRENT LOAD USING COMPUTATIONAL FLUID DYNAMICS
    Kim, Joo Sung
    Hong, Chun Beom
    Lee, Dong Yeon
    Ahn, Sung Mok
    [J]. OMAE 2009, VOL 5, 2009, : 359 - 366
  • [2] Propeller Performance Penalty of Biofouling: Computational Fluid Dynamics Prediction
    Song, Soonseok
    Demirel, Yigit Kemal
    Atlar, Mehmet
    [J]. JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (06):
  • [3] The assessment of the performance of balconies using computational fluid dynamics
    Ai, Z. T.
    Mak, C. M.
    Niu, J. L.
    Li, Z. R.
    [J]. BUILDING SERVICES ENGINEERING RESEARCH & TECHNOLOGY, 2011, 32 (03): : 229 - 243
  • [4] Projectile performance, stability, and free-flight motion prediction using computational fluid dynamics
    Weinacht, P
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2004, 41 (02) : 257 - 263
  • [5] Computational fluid dynamics simulation for the prediction of the venturi scrubber performance using finite volume method
    Attaullah
    Niazi, Muhammad Bilal Khan
    Ahsan, Muhammad
    Ali, Majid
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2020, 11 (04) : 338 - 346
  • [6] Efficiency prediction for storage chambers using computational fluid dynamics
    Stovin, VR
    Saul, AJ
    [J]. WATER SCIENCE AND TECHNOLOGY, 1996, 33 (09) : 163 - 170
  • [7] Prediction of Flow in the Industrial Blower using Computational Fluid Dynamics
    Charapale, Utkarsh Diliprao
    Mathew, Arun Tom
    [J]. MATERIALS TODAY-PROCEEDINGS, 2018, 5 (05) : 12311 - 12319
  • [8] Prediction of fire loading on the structures using computational fluid dynamics
    Erdelyiova, Romana
    Figuli, Lucia
    Ivanco, Matus
    [J]. DYNAMICS OF CIVIL ENGINEERING AND TRANSPORT STRUCTURES AND WIND ENGINEERING - DYN-WIND'2020, 2020, 313
  • [9] PREDICTION OF WATER WAVE PROPAGATION USING COMPUTATIONAL FLUID DYNAMICS
    Javanmardi, Mohammadreza
    Binns, Jonathan
    Thomas, Giles
    Renilson, Martin R.
    [J]. PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 7, 2013,
  • [10] Prediction of duct fitting losses using computational fluid dynamics
    Manning, Andy
    Wilson, John
    Hanlon, Nate
    Mikjaniec, Travis
    [J]. HVAC&R RESEARCH, 2013, 19 (04): : 400 - 411