Application for Fault Diagnosis of Loopers based on Evolutionary KPCA-LSSVM

被引:1
|
作者
Shi, Huaitao [1 ]
Liu, Jianchang [1 ]
机构
[1] Northeastern Univ, Key Lab Integrated Automat Proc Ind, Minist Educ, Shenyang, Liaoning Provin, Peoples R China
关键词
Fault diagnosis; Loopers; Kernel Principal Component Analysis; Least Squares Support Vector Machine; Genetic Algorithm; Nonlinear feature extraction; Classification; SUPPORT VECTOR MACHINES;
D O I
10.1109/WCICA.2010.5554558
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an evolutionary hybrid approach is studied for fault diagnosis and it is applied to classify the loopers faults in hot rolling process. The algorithm called evolutionary KPCA-LSSVM is the combination of genetic algorithm (GA), kernel principal component analysis (KPCA) and Least Squares Support Vector Machine (LSSVM), which can obtain better fault recognition rate. Firstly, kernel function concept is introduced, and then GA is used to select the kernel parameter in order to improve the performances of nonlinear feature extraction and fault classification of KPCA-LSSVM method. Secondly, KPCA is used to extract the nonlinear principal features of loopers by adopting the optimal kernel trick to map nonlinearly the data into a feature space and employing the PCA procedure. Thirdly, the nonlinear principal features of loopers are taken as input into a LSSVM to classify the faults of loopers in hot rolling process. The results of contrastive experiments show that the evolutionary KPCA-LSSVM using GA to optimize the kernel parameters can extract fault features associated with the loopers effectively, reduce the computational cost and enhance fault classification properties.
引用
收藏
页码:5861 / 5865
页数:5
相关论文
共 50 条
  • [1] Fault Detection and Diagnosis Based on KPCA-LSSVM Model
    Li, Zhonghai
    Zhang, Yan
    Jiang, Liying
    [J]. 2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 634 - 638
  • [2] Modeling approach based on KPCA-LSSVM and its application to steel harden-ability prediction
    School of Information Engineering, University of Science and Technology Beijing, Beijing 100083, China
    [J]. Kongzhi yu Juece Control Decis, 2006, 9 (1073-1076):
  • [3] 矿区地表沉陷预测的KPCA-LSSVM模型
    刘福臻
    耿波涛
    刘丹
    [J]. 金属矿山, 2018, (05) : 130 - 134
  • [4] 基于KPCA-LSSVM的软测量建模方法
    王强
    田学民
    [J]. 化工学报, 2011, 62 (10) : 2813 - 2817
  • [5] Fault Diagnosis of Subway Plug Door Based on KPCA and CS-LSSVM
    Heng, Xidan
    Jiang, Qilong
    Liu, Dong
    Xie, Le
    Zhan, Taoning
    Jin, Ningyuan
    [J]. PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 100 - 105
  • [6] KPCA-LSSVM方法在视频时间序列预测中应用
    张观东
    李军
    [J]. 华侨大学学报(自然科学版), 2018, 39 (02) : 281 - 285
  • [7] 基于KPCA-LSSVM的公路软基路堤沉降预测
    成传亮
    王淑娟
    罗德超
    [J]. 重庆理工大学学报(自然科学), 2010, 24 (06) : 78 - 82
  • [8] 用KPCA-LSSVM预测变压器油击穿电压
    熊印国
    [J]. 计算机与应用化学, 2014, 31 (10) : 1162 - 1164
  • [9] 基于KPCA-LSSVM回归算法的WLAN室内定位方法
    王修平
    覃锡忠
    贾振红
    牛红梅
    王哲辉
    [J]. 激光杂志, 2018, 39 (07) : 121 - 125
  • [10] 基于KPCA-LSSVM的单向阀故障诊断研究
    牟竹青
    [J]. 电子科技, 2019, 32 (03) : 10 - 14