Lp-C*-Semi-Inner Product Spaces

被引:0
|
作者
Khalili, Zakiye [1 ]
Janfada, Alireza [1 ]
Miri, Mohammad Reza [1 ]
Niazi, Mohsen [1 ]
机构
[1] Univ Birjand, Dept Math, POB 414, Birjand 9717851367, Iran
来源
关键词
Hilbert C*-module; Semi-inner product; Derivation; Anti-Derivation; LOCAL AUTOMORPHISMS; 2-LOCAL DERIVATIONS; ALGEBRAS; MODULES;
D O I
10.22130/scma.2021.526207.918
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article introduces the notion of L-p-C*-semi-inner product space, a generalization of the concept of C*-semi-inner product space introduced by Gamchi et al., where we consider Holder's inequality instead of Cauchy Schwartz' inequality. We establish some basic results L-p-C*-semi-inner product spaces, analogous to those valid for C*-semi-inner product spaces and Hilbert C*-modules.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] C*-semi-inner product spaces
    Gamchi, Saeedeh Shamsi
    Janfada, Mohammad
    Niknam, Asadollah
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2018, 10 (01): : 73 - 83
  • [2] Frames in Semi-inner Product Spaces
    Sahu, N. K.
    Mohapatra, Ram N.
    [J]. MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 149 - 158
  • [3] SEMI-INNER PRODUCT SPACES, I
    HUSAIN, T
    MALVIYA, BD
    [J]. COLLOQUIUM MATHEMATICUM, 1972, 24 (02) : 234 - &
  • [4] SEMI-INNER PRODUCT SPACES, II
    HUSAIN, T
    MALVIYA, BD
    [J]. COLLOQUIUM MATHEMATICUM, 1973, 27 (01) : 95 - 105
  • [5] PARTIAL INNER PRODUCT-SPACES AND SEMI-INNER PRODUCT-SPACES
    ANTOINE, JP
    GUSTAFSON, K
    [J]. ADVANCES IN MATHEMATICS, 1981, 41 (03) : 281 - 300
  • [6] TOPOLOGIES ON GENERALIZED SEMI-INNER PRODUCT SPACES
    NATH, B
    [J]. COMPOSITIO MATHEMATICA, 1971, 23 (03) : 309 - &
  • [7] CHARACTERIZATIONS OF INNER PRODUCT SPACES BY INEQUALITIES INVOLVING SEMI-INNER PRODUCT
    Wojcik, Pawel
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 879 - 885
  • [8] GENERALIZED ADJOINT IN CERTAIN SEMI-INNER PRODUCT SPACES
    KOEHLER, DO
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 645 - &
  • [9] Numerical Range of Two Operators in Semi-Inner Product Spaces
    Sahu, N. K.
    Nahak, C.
    Nanda, S.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [10] ON SEMI-INNER PRODUCT ALGEBRAS
    HUSAIN, T
    MALVIYA, BD
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (03): : 273 - &