An improved molecular inversion probe based targeted sequencing approach for low variant allele frequency

被引:3
|
作者
Biezuner, Tamir [1 ]
Brilon, Yardena [1 ]
Ben Arye, Asaf [2 ]
Oron, Barak [1 ]
Kadam, Aditee [1 ]
Danin, Adi [1 ]
Furer, Nili [1 ]
Minden, Mark D. [3 ]
Kim, Dennis Dong Hwan [3 ]
Shapira, Shiran [4 ]
Arber, Nadir [4 ]
Dick, John [5 ]
Thavendiranathan, Paaladinesh [6 ]
Moskovitz, Yoni [1 ]
Kaushansky, Nathali [1 ]
Chapal-Ilani, Noa [1 ]
Shlush, Liran, I [1 ,7 ,8 ]
机构
[1] Weizmann Inst Sci, Dept Immunol, IL-761001 Rehovot, Israel
[2] Tel Aviv Univ, Dept Stat & Operat Res, Ramat Aviv, Israel
[3] Univ Hlth Network UHN, Princess Margaret Canc Ctr, Dept Med Oncol & Hematol, Toronto, ON, Canada
[4] Sourasky Med Ctr Tel Aviv, Tel Aviv, Israel
[5] Univ Hlth Network UHN, Princess Margaret Canc Ctr, Dept Mol Genet, Toronto, ON, Canada
[6] Univ Toronto, Univ Hlth Network, Toronto Gen Hosp, Dept Med,Div Cardiol,Peter Munk Cardiac Ctr,Ted R, Toronto, ON, Canada
[7] Rambam Healthcare Campus, Div Hematol, Haifa, Israel
[8] Maccabi Healthcare Serv, Mol Hematol Clin, Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
DISCOVERY; GERMLINE; MUTATION;
D O I
10.1093/nargab/lqab125
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Deep targeted sequencing technologies are still not widely used in clinical practice due to the complexity of the methods and their cost. The Molecular Inversion Probes (MIP) technology is cost effective and scalable in the number of targets, however, suffers from low overall performance especially in GC rich regions. In order to improve the MIP performance, we sequenced a large cohort of healthy individuals (n = 4417), with a panel of 616 MIPs, at high depth in duplicates. To improve the previous state-of-the-art statistical model for low variant allele frequency, we selected 4635 potentially positive variants and validated them using amplicon sequencing. Using machine learning prediction tools, we significantly improved precision of 10-56.25% (P < 0.0004) to detect variants with VAF > 0.005. We further developed biochemically modified MIP protocol and improved its turn-around-time to similar to 4 h. Our new biochemistry significantly improved uniformity, GC-Rich regions coverage, and enabled 95% on target reads in a large MIP panel of 8349 genomic targets. Overall, we demonstrate an enhancement of the MIP targeted sequencing approach in both detection of low frequency variants and in other key parameters, paving its way to become an ultrafast cost-effective research and clinical diagnostic tool.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reproducibility of Variant Allele Frequency in Targeted Cancer Next-Generation Sequencing Assays
    Meyer, Anders
    Sussman, Robyn
    Bigdeli, Ashkan
    Rosenbaum, Jason
    [J]. MODERN PATHOLOGY, 2018, 31 : 783 - 783
  • [2] Reproducibility of Variant Allele Frequency in Targeted Cancer Next-Generation Sequencing Assays
    Meyer, Anders
    Sussman, Robyn
    Bigdeli, Ashkan
    Rosenbaum, Jason
    [J]. LABORATORY INVESTIGATION, 2018, 98 : 783 - 783
  • [3] Cytogenetic and molecular genetic approach to resolve low variant allele frequency of JAK2 in clinical practice
    Mazzeo, P.
    Ganster, C.
    Brzuszkiewicz, E.
    Kamper, M.
    Shirneshan, K.
    Rittscher, K.
    Elmaagacli, A. H.
    Glass, B.
    Braulke, F.
    Schanz, J.
    Haase, D.
    [J]. ONCOLOGY RESEARCH AND TREATMENT, 2020, 43 (SUPPL 4) : 81 - 82
  • [4] Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller
    Chang Xu
    Mohammad R. Nezami Ranjbar
    Zhong Wu
    John DiCarlo
    Yexun Wang
    [J]. BMC Genomics, 18
  • [5] Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller
    Xu, Chang
    Ranjbar, Mohammad R. Nezami
    Wu, Zhong
    DiCarlo, John
    Wang, Yexun
    [J]. BMC GENOMICS, 2017, 18
  • [6] Detecting low allele frequency somatic mutations using targeted amplicon sequencing and a novel double strand molecular barcoding scheme
    Zhang, Li Jacey
    Lee, Lucie Siu
    Liu, Yang Lily
    Liu, Jeff
    Chen, Tao
    Liu, Guoying
    Liu, Zhitong
    [J]. CANCER RESEARCH, 2018, 78 (13)
  • [7] smCounter2: an accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers
    Xu, Chang
    Gu, Xiujing
    Padmanabhan, Raghavendra
    Wu, Zhong
    Peng, Quan
    DiCarlo, John
    Wang, Yexun
    [J]. BIOINFORMATICS, 2019, 35 (08) : 1299 - 1309
  • [8] Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencing
    Almomani, Rowida
    Marchi, Margherita
    Sopacua, Maurice
    Lindsey, Patrick
    Salvi, Erika
    Koning, Bart de
    Santoro, Silvia
    Magri, Stefania
    Smeets, Hubert J. M.
    Martinelli Boneschi, Filippo
    Malik, Rayaz R.
    Ziegler, Dan
    Hoeijmakers, Janneke G. J.
    Boenhof, Gidon
    Dib-Hajj, Sulayman
    Waxman, Stephen G.
    Merkies, Ingemar S. J.
    Lauria, Giuseppe
    Faber, Catharina G.
    Gerrits, Monique M.
    [J]. PLOS ONE, 2020, 15 (09):
  • [9] MOLECULAR INVERSION PROBE-TARGETED NEXT GENERATION SEQUENCING TO IDENTIFY GENETIC CAUSES OF PAINFUL NEUROPATHY
    Almomani, R.
    Lindsey, P.
    Faber, C. G.
    Tononi, P.
    Lauria, G.
    Merkies, I. S. J.
    Hoeijmakers, J. G. J.
    de Greef, B.
    Sopacua, M.
    Santoro, S.
    Smeets, H.
    Boneschi, F. M.
    Dib-Hajj, S.
    Waxman, S. G.
    Gerrits, M. M.
    [J]. JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2015, 20 (02) : 95 - 96
  • [10] Low-Frequency Variant Detection in Cell-Free DNA with Ultrafast Amplicon-Based Targeted Sequencing Using Unique Molecular Identifiers
    Liu, Y. L.
    Pendleton, K.
    Lee, L.
    Lin, L.
    Liu, G.
    Liu, J.
    Liu, Z.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2019, 21 (03): : S27 - S28