Cd substitution in Zintl phase Eu5In2Sb6 enhancing the thermoelectric performance

被引:8
|
作者
Lv, Wanyu [1 ]
Yang, Chunhui [1 ]
Lin, Jianwei [1 ]
Hu, Xinyi [1 ]
Guo, Kai [1 ]
Yang, Xinxin [1 ]
Luo, Jun [1 ]
Zhao, Jing-Tai [1 ,2 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Eu5In2Sb6; Zintl phase; Semiconductors; Thermoelectric properties; POWER; HEAT;
D O I
10.1016/j.jallcom.2017.08.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rare earth-contained compound Eu5In2Sb6 which shows improved air stability and competitive thermoelectric properties in comparison to its alkaline earth analogues, has attracted much attention recently for thermoelectric applications. Polycrystalline samples Eu5In2-xCdxSb6 (x = 0, 0.01, 0.02, 0.06, 0.08, 0.1) were synthesized via a direct element combination reaction and subsequent hot-press sintering. With increasing Cd concentration, both the electrical resistivity and Seebeck coefficient decrease monotonously, and the conductive behaviors vary essentially from non-degenerate semiconductor to degenerate semiconductor. The maximum value of power factor (5.78 mu W/cm*K-2 ) can be obtained with x = 0.1. While the total thermal conductivity rise as a result of the contribution of electronic part, the thermoelectric figure of merit zT for Eu5In2-xCdxSb6 can be enhanced up to 0.5 at 709 K. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:618 / 622
页数:5
相关论文
共 50 条
  • [1] Noncollinear 2k antiferromagnetism in the Zintl semiconductor Eu5In2Sb6
    Morano, Vincent C.
    Gaudet, Jonathan
    Varnava, Nicodemos
    Berry, Tanya
    Halloran, Thomas
    Lygouras, Chris J.
    Wang, Xiaoping
    Hoffman, Christina M.
    Xu, Guangyong
    Lynn, Jeffrey W.
    McQueen, Tyrel M.
    Vanderbilt, David
    Broholm, Collin L.
    PHYSICAL REVIEW B, 2024, 109 (01)
  • [2] Eu5In2Sb6, Eu5In2-xZnxSb6:: rare earth zintl phases with narrow band gaps
    Park, SM
    Choi, ES
    Kang, W
    Kim, SJ
    JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (06) : 1839 - 1843
  • [3] High temperature thermoelectric properties of Zn-doped Eu5In2Sb6
    Chanakian, Sevan
    Aydemir, Umut
    Zevalkink, Alex
    Gibbs, Zachary M.
    Fleurial, Jean-Pierre
    Bux, Sabah
    Snyder, G. Jeffrey
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) : 10518 - 10524
  • [4] Colossal piezoresistance in narrow-gap Eu5In2Sb6
    Ghosh, S.
    Lane, C.
    Ronning, F.
    Bauer, E. D.
    Thompson, J. D.
    Zhu, J. -X.
    Rosa, P. F. S.
    Thomas, S. M.
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [5] Magnetocaloric properties of single-crystalline Eu5In2Sb6
    Synoradzki, Karol
    Tolinski, Tomasz
    Ul Ain, Qurat
    Matczak, Michal
    Romanova, Tetiana
    Kaczorowski, Dariusz
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1006
  • [6] Microscopic probe of magnetic polarons in antiferromagnetic Eu5In2Sb6
    Souza, J. C.
    Thomas, S. M.
    Bauer, E. D.
    Thompson, J. D.
    Ronning, F.
    Pagliuso, P. G.
    Rosa, P. F. S.
    PHYSICAL REVIEW B, 2022, 105 (03)
  • [7] Thermoelectric properties and electronic structure of the Zintl phase Sr5Al2Sb6
    Zevalkink, Alex
    Takagiwa, Yoshiki
    Kitahara, Koichi
    Kimura, Kaoru
    Snyder, G. Jeffrey
    DALTON TRANSACTIONS, 2014, 43 (12) : 4720 - 4725
  • [8] Magnetic and electronic properties unveil polaron formation in Eu5In2Sb6
    Crivillero, M. Victoria Ale
    Roessler, Sahana
    Doerr, M.
    Granovsky, S.
    Cook, M. S.
    Rosa, Priscila F. S.
    Mueller, J.
    Wirth, S.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [9] Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd) and their substitution variants: a class of potential thermoelectric materials
    Guo Kai
    Cao Qigao
    Zhao Jingtai
    JOURNAL OF RARE EARTHS, 2013, 31 (11) : 1029 - 1038
  • [10] Zintl phase compounds AM2Sb2(A=Ca,Sr,Ba,Eu,Yb;M=Zn,Cd) and their substitution variants:a class of potential thermoelectric materials
    郭凯
    操齐高
    赵景泰
    Journal of Rare Earths, 2013, 31 (11) : 1029 - 1038