Asynchronous Incremental Block-Coordinate Descent

被引:0
|
作者
Aytekin, Arda [1 ]
Feyzmahdavian, Hamid Reza [1 ]
Johansson, Mikael [1 ]
机构
[1] Royal Inst Technol KTH, Sch Elect Engn, Dept Automat Control, SE-10044 Stockholm, Sweden
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies a flexible algorithm for minimizing a sum of component functions, each of which depends on a large number of decision variables. Such formulations appear naturally in "big data" applications, where each function describes the loss estimated using the data available at a specific machine, and the number of features under consideration is huge. In our algorithm, a coordinator updates a global iterate based on delayed partial gradients of the individual objective functions with respect to blocks of coordinates. Delayed incremental gradient and delayed coordinate descent algorithms are obtained as special cases. Under the assumption of strong convexity and block coordinate-wise Lipschitz continuous partial gradients, we show that the algorithm converges linearly to a ball around the optimal value. Contrary to related proposals in the literature, our algorithm is delay-insensitive: it converges for any bounded information delay, and its step-size parameter can be chosen independently of the maximum delay bound.
引用
收藏
页码:19 / 24
页数:6
相关论文
共 50 条
  • [1] Asynchronous Parallel Incremental Block-Coordinate Descent for Decentralized Machine Learning
    Chen, Hao
    Ye, Yu
    Xiao, Ming
    Skoglund, Mikael
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (04) : 1252 - 1259
  • [2] Incremental Nonnegative Tucker Decomposition with Block-Coordinate Descent and Recursive Approaches
    Zdunek, Rafal
    Fonal, Krzysztof
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [3] Efficient block-coordinate descent algorithms for the Group Lasso
    Qin Z.
    Scheinberg K.
    Goldfarb D.
    [J]. Qin, Z. (zq2107@columbia.edu), 2013, Springer Verlag (05) : 143 - 169
  • [4] On the convergence of a Block-Coordinate Incremental Gradient method
    Palagi, Laura
    Seccia, Ruggiero
    [J]. SOFT COMPUTING, 2021, 25 (19) : 12615 - 12626
  • [5] On the convergence of a Block-Coordinate Incremental Gradient method
    Laura Palagi
    Ruggiero Seccia
    [J]. Soft Computing, 2021, 25 : 12615 - 12626
  • [6] Block-coordinate descent and local consistencies in linear programming
    Dlask, Tomas
    [J]. CONSTRAINTS, 2023, 28 (02) : 69 - 70
  • [7] On the complexity analysis of randomized block-coordinate descent methods
    Lu, Zhaosong
    Xiao, Lin
    [J]. MATHEMATICAL PROGRAMMING, 2015, 152 (1-2) : 615 - 642
  • [8] On the complexity analysis of randomized block-coordinate descent methods
    Zhaosong Lu
    Lin Xiao
    [J]. Mathematical Programming, 2015, 152 : 615 - 642
  • [9] Block-coordinate descent and local consistencies in linear programming
    Tomáš Dlask
    [J]. Constraints, 2023, 28 : 69 - 70
  • [10] Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate Descent
    Petra, Stefania
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (03): : 129 - 149