The topological structure of contact and symplectic quotients

被引:13
|
作者
Lerman, E [1 ]
Willett, C [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1155/S1073792801000022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:33 / 52
页数:20
相关论文
共 50 条
  • [1] On the complex structure of symplectic quotients
    Xiangsheng Wang
    Science China Mathematics, 2021, 64 : 2719 - 2742
  • [2] On the complex structure of symplectic quotients
    Xiangsheng Wang
    ScienceChina(Mathematics), 2021, 64 (12) : 2719 - 2742
  • [3] On the complex structure of symplectic quotients
    Wang, Xiangsheng
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2719 - 2742
  • [4] Symplectic quotients have symplectic singularities
    Herbig, Hans-Christian
    Schwarz, Gerald W.
    Seaton, Christopher
    COMPOSITIO MATHEMATICA, 2020, 156 (03) : 613 - 646
  • [5] Symplectic implosion and nonreductive quotients
    Kirwan, Frances
    GEOMETRIC ASPECTS OF ANALYSIS AND MECHANICS: IN HONOR OF THE 65TH BIRTHDAY OF HANS DUISTERMAAT, 2011, 292 : 213 - 256
  • [6] COHOMOLOGY RINGS OF SYMPLECTIC QUOTIENTS
    KALKMAN, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 458 : 37 - 52
  • [7] The cohomology rings of symplectic quotients
    Tolman, S
    Weitsman, J
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2003, 11 (04) : 751 - 773
  • [8] Algebraic symplectic analogues of additive quotients
    Doran, Brent
    Hoskins, Victoria
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (06) : 1591 - 1638
  • [9] The Kirwan map for singular symplectic quotients
    Kiem, YH
    Woolf, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 209 - 230
  • [10] On Orbifold Criteria for Symplectic Toric Quotients
    Farsi, Carla
    Herbig, Hans-Christian
    Seaton, Christopher
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9