Optimal restricted estimation for more efficient longitudinal causal inference

被引:0
|
作者
Kennedy, Edward H. [1 ]
Joffe, Marshall M. [1 ]
Small, Dylan S. [2 ]
机构
[1] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
关键词
Doubly robust; Generalized method of moments; Marginal structural model; Semiparametric efficiency; Structural nested model; Time-varying confounding; GENERALIZED-METHOD; MOMENTS;
D O I
10.1016/j.spl.2014.11.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Efficient semiparametric estimation of longitudinal causal effects is often analytically or computationally intractable. We propose a novel restricted estimation approach for increasing efficiency, which can be used with other techniques, is straightforward to implement, and requires no additional modeling assumptions. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 191
页数:7
相关论文
共 50 条
  • [1] RESTRICTED CAUSAL INFERENCE
    KLOPOTEK, MA
    [J]. INFORMATION PROCESSING '94, VOL I: TECHNOLOGY AND FOUNDATIONS, 1994, 51 : 342 - 347
  • [2] Causal inference in longitudinal studies with history-restricted marginal structural models
    Neugebauer, Romain
    van der Laan, Mark J.
    Joffe, Marshall M.
    Tager, Ira B.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 119 - 154
  • [3] G-computation estimation for causal inference with complex longitudinal data
    Neugebauer, Romain
    van der Laan, Mark J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1676 - 1697
  • [4] Doubly robust estimation and causal inference in longitudinal studies with dropout and truncation by death
    Shardell, Michelle
    Hicks, Gregory E.
    Ferrucci, Luigi
    [J]. BIOSTATISTICS, 2015, 16 (01) : 155 - 168
  • [5] Reply: More on Causal Inference Studies
    Lederer, David J.
    Bell, Scott C.
    Smyth, Alan R.
    Chalmers, James D.
    [J]. ANNALS OF THE AMERICAN THORACIC SOCIETY, 2019, 16 (05) : 646 - 646
  • [6] Robust and efficient estimation for the treatment effect in causal inference and missing data problems
    Lin, Huazhen
    Zhou, Fanyin
    Wang, Qiuxia
    Zhou, Ling
    Qin, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2018, 205 (02) : 363 - 380
  • [7] A Framework for Optimal Matching for Causal Inference
    Kallus, Nathan
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 372 - 381
  • [9] More efficient estimation for logistic regression with optimal subsamples
    Wang, HaiYing
    [J]. Journal of Machine Learning Research, 2019, 20
  • [10] Multiple robustness estimation in causal inference
    Wang, Lei
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (23) : 5701 - 5718