Kernel MDL to determine the number of clusters

被引:0
|
作者
Kyrgyzov, Ivan O. [1 ]
Kyrgyzov, Olexiy O. [2 ]
Maitre, Henri [1 ]
Campedel, Marine [1 ]
机构
[1] Telecom Paris LTCI, GET, Competence Ctr Informat Extract, CNRS,UMR 5141, 40 Rue Barrault, F-75013 Paris, France
[2] Oregon Hlth & Sci Univ, OGI Sch Sci & Engn, Dept Comp Sci & Elect Engn, Beaverton, OR 97006 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a new criterion, based on Minimum Description Length (MDL), to estimate an optimal number of clusters. This criterion, called Kernel MDL (KMDL), is particularly adapted to the use of kernel K-means clustering algorithm. Its formulation is based on the definition of MDL derived for Gaussian Mixture Model (GMM). We demonstrate the efficiency of our approach on both synthetic data and real data such as SPOT5 satellite images.
引用
收藏
页码:203 / +
页数:3
相关论文
共 50 条
  • [1] Determine the number of clusters by data augmentation
    Luo, Wei
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 3910 - 3936
  • [2] Identifying factors that determine kernel number in wheat
    Bindraban, PS
    Sayre, KD
    Solis-Moya, E
    [J]. FIELD CROPS RESEARCH, 1998, 58 (03) : 223 - 234
  • [3] An Approach to Determine the Number of Clusters for Clustering Algorithms
    Dinh Thuan Nguyen
    Huan Doan
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE - TECHNOLOGIES AND APPLICATIONS, PT I, 2012, 7653 : 485 - 494
  • [4] Using the Negentropy Increment to Determine the Number of Clusters
    Lago-Fernandez, Luis F.
    Corbacho, Fernando
    [J]. BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 448 - +
  • [5] An Adaptive Method to Determine the Number of Clusters in Clustering Process
    Huan Doan
    Dinh Thuan Nguyen
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2014,
  • [6] Using the stability of objects to determine the number of clusters in datasets
    Lord, Etienne
    Willems, Matthieu
    Lapointe, Francois-Joseph
    Makarenkov, Vladimir
    [J]. INFORMATION SCIENCES, 2017, 393 : 29 - 46
  • [7] Inexact MDL for Linear Manifold Clusters
    Haralick, Robert M.
    Diky, Art
    Su, Xing
    Kiang, Nancy Y.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1345 - 1351
  • [8] An Evolving Fuzzy Model to Determine an Optimal Number of Data Stream Clusters
    Al-Khamees, Hussein A. A.
    Al-A'araji, Nabeel
    Al-Shamery, Eman S.
    [J]. INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2022, 22 (03) : 267 - 275
  • [9] A New Approach to Determine the Optimal Number of Clusters Based on the Gap Statistic
    Yang, Jaekyung
    Lee, Jong-Yeong
    Choi, Myoungjin
    Joo, Yeongin
    [J]. MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 227 - 239
  • [10] A Method to Determine the Number of Clusters Based on Multi-validity Index
    Sun, Ning
    Yu, Hong
    [J]. ROUGH SETS, IJCRS 2018, 2018, 11103 : 427 - 439