Continuum percolation in high dimensions

被引:1
|
作者
Gouere, Jean-Baptiste [1 ]
Marchand, Regine [2 ,3 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, Federat Denis Poisson FR CNRS 2964, Fac Sci & Tech,CNRS UMR 7350 Tours, Parc Grandmont, F-37200 Tours, France
[2] Univ Lorraine, F-54506 Vandoeuvre Les Nancy, France
[3] CNRS, Inst Elie Cartan Lorraine Math, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
Percolation; Continuum percolation; Boolean model; SUBCRITICAL REGIMES; SPHERES; SIZES; RADII;
D O I
10.1214/17-AIHP855
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a Boolean model Sigma in R-d. The centers are given by a homogeneous Poisson point process with intensity. and the radii of distinct balls are i.i.d. with common distribution nu. The critical covered volume is the proportion of space covered by Sigma when the intensity lambda is critical for percolation. We study the asymptotic behaviour, as d tends to infinity, of the critical covered volume. It appears that, in contrast to what happens in the constant radii case studied by Penrose, geometrical dependencies do not always vanish in high dimension.
引用
收藏
页码:1778 / 1804
页数:27
相关论文
共 50 条
  • [1] Monte Carlo results for continuum percolation in low and high dimensions
    Wagner, N.
    Balberg, I.
    Klein, D.
    [J]. PHYSICAL REVIEW E, 2006, 74 (01)
  • [2] CONTINUUM PERCOLATION AND EUCLIDEAN MINIMAL SPANNING TREES IN HIGH DIMENSIONS
    Penrose, Mathew D.
    [J]. ANNALS OF APPLIED PROBABILITY, 1996, 6 (02): : 528 - 544
  • [3] Continuum Percolation Thresholds in Two Dimensions
    Mertens, Stephan
    Moore, Cristopher
    [J]. PHYSICAL REVIEW E, 2012, 86 (06)
  • [4] Continuum percolation of polydisperse hyperspheres in infinite dimensions
    Grimaldi, Claudio
    [J]. PHYSICAL REVIEW E, 2015, 92 (01)
  • [5] Point to point continuum percolation in two dimensions
    Sadeghnejad, S.
    Masihi, M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [6] PERCOLATION IN HIGH DIMENSIONS
    BOLLOBAS, B
    KOHAYAKAWA, Y
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (02) : 113 - 125
  • [7] PERCOLATION IN HIGH DIMENSIONS
    GORDON, DM
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 44 : 373 - 384
  • [8] CONCENTRATION GRADIENT APPROACH TO CONTINUUM PERCOLATION IN 2 DIMENSIONS
    ROSSO, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (04): : L131 - L136
  • [9] Critical percolation in high dimensions
    Grassberger, P
    [J]. PHYSICAL REVIEW E, 2003, 67 (03): : 4
  • [10] Bootstrap Percolation in High Dimensions
    Balogh, Jozsef
    Bollobas, Bela
    Morris, Robert
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (5-6): : 643 - 692