IMPROVING SMOS SOIL MOISTURE ALGORITHM PERFORMANCE IN FORESTED AREAS WITH MULTISENSOR SAR DATA

被引:0
|
作者
Seppanen, Jaakko [1 ]
Praks, Jaan [1 ]
Antropov, Oleg [1 ]
机构
[1] Aalto Univ, Dept Radio Sci & Engn, FI-00076 Aalto, Finland
关键词
Soil moisture; L-band radiometer; SMOS; L-MEB; L-MEB MODEL; MICROWAVE EMISSION; CALIBRATION;
D O I
10.1109/IGARSS.2016.7729428
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new approach for improving boreal forest soil moisture estimation using L-band microwave radiometer. The effect is achieved by introducing improved description of forest canopy contribution from multisensor SAR measurements. Spaceborne L-band radiometer is a valuable tool for providing soil moisture estimates globally. Unfortunately, complex vegetation layer, such as forest, can hamper the accuracy of soil moisture retrieval leading to rather poor results particularly over boreal forest areas. Currently, the L-band Microwave Emission of the Biosphere (L-MEB) model adopted in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm, uses Leaf Area Index (LAI) in order to to account for forest canopy contribution to total emission. However, it can argued that LAI presents poorly the actual structure of the coniferous forest. The LAI is calibrated to represent only the leaves, but at L-band, the main contribution to emission and attenuation is due to branches, while trunks and leaves have smaller effects. Here, we tested several combinations of spaceborne SAR data as a substitute of LAI in temperature brightness models for soil moisture retrieval. Particularly when L-band ALOS PALSAR stripmap data were used, the agreement between modelled and measured TB has improved from 0.46 to 0.55 in the L-MEB model.
引用
收藏
页码:1675 / 1678
页数:4
相关论文
共 50 条
  • [1] Optimizing the algorithm for retrieving soil moisture from SMOS data
    Waldteufel, P.
    Richaume, P.
    Kerr, Y.
    Wigneron, J. -P
    Mahmoodi, A.
    Mialon, A.
    Vergely, J. -L
    Cabot, F.
    Ferrazzoli, P.
    Delwart, S.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3952 - +
  • [2] The SMOS Soil Moisture Retrieval Algorithm
    Kerr, Yann H.
    Waldteufel, Philippe
    Richaume, Philippe
    Wigneron, Jean Pierre
    Ferrazzoli, Paolo
    Mahmoodi, Ali
    Al Bitar, Ahmad
    Cabot, Francois
    Gruhier, Claire
    Juglea, Silvia Enache
    Leroux, Delphine
    Mialon, Arnaud
    Delwart, Steven
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1384 - 1403
  • [3] Multitemporal Soil Moisture Retrieval over Bare Agricultural Areas by Means of Alpha Model with Multisensor SAR Data
    Zhang, Xiang
    Tang, Xinming
    Gao, Xiaoming
    Zhao, Hui
    [J]. ADVANCES IN METEOROLOGY, 2018, 2018
  • [4] A model for downscaling SMOS soil moisture using Sentinel-1 SAR data
    Li, Junhua
    Wang, Shusen
    Gunn, Grant
    Joosse, Pamela
    Russell, Hazen A. J.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 72 : 109 - 121
  • [5] Improving the Spatial Bias Correction Algorithm in SMOS Image Reconstruction Processor: Validation of Soil Moisture Retrievals With In Situ Data
    Khazaal, Ali
    Richaume, Philippe
    Cabot, Francois
    Anterrieu, Eric
    Mialon, Arnaud
    Kerr, Yann H.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 277 - 290
  • [6] Application of multisensor data for evaluation of soil moisture
    Dabrowska-Zielinska, K
    Gruszczynska, M
    Kowalik, W
    Stankiewicz, K
    [J]. LAND SURFACE CHARACTERIZATION AND REMOTE SENSING OF OCEAN PROCESSES, 2002, 29 (01): : 45 - 50
  • [7] SMOS NEURAL NETWORK SOIL MOISTURE DATA ASSIMILATION
    Rodriguez-Fernandez, N. J.
    de Rosnay, P.
    Albergel, C.
    Aires, F.
    Prigent, C.
    Richaume, P.
    Kerr, Y. H.
    Drusch, M.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5548 - 5551
  • [8] DATA-BASED DISAGGREGATION OF SMOS SOIL MOISTURE
    Kornelsen, Kurt C.
    Coulibaly, Paulin
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [9] EVALUATION OF ASSIMILATED SMOS SOIL MOISTURE DATA FOR US CROPLAND SOIL MOISTURE MONITORING
    Yang, Zhengwei
    Shrestha, Ranjay
    Crow, Wade
    Bolten, John
    Mladenova, Iva
    Yu, Genong
    Di, Liping
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5244 - 5247
  • [10] COMPARISON OF TWO RETRIEVAL SOIL MOISTURE ALGORITHMS ON SMOS DATA
    Bobrov, P. P.
    Mironov, V. L.
    Kosolapova, L. G.
    Yashchenko, A. S.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1131 - 1134