Integral ISS for Switched Nonlinear Time-Varying Systems Using Indefinite Multiple Lyapunov Functions

被引:53
|
作者
Long, Lijun [1 ,2 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Indefinite Lyapunov function; integral inputto-state stability (iISS); multiple Lyapunov functions; switched nonlinear time-varying systems; TO-STATE STABILITY; SMALL-GAIN THEOREM; NETWORKS; IISS;
D O I
10.1109/TAC.2018.2833159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with studying Lyapunov characterization of integral input-to-state stability (iISS) for switched nonlinear time-varying systems. Sufficient conditions are given to verify iISS for switched nonlinear time-varying systems under a time-varying state-dependent switching law designed, which allow all subsystems to be not integral input-to-state stable (iISS) and the time derivative of Lyapunov functions of individual subsystems to be indefinite. An indefinite multiple Lyapunov functions (iMLFs) method for analyzing the dynamic behavior of switched nonlinear time-varying systems is provided. Also, an iMLFs-based small-gain theorem for switched interconnected nonlinear time-varying systems is presented, where each lower dimensional subsystem is allowed to be not iISS, which extends the small-gain technique from its original nonswitched nonlinear time-invariant version to a switched nonlinear time-varying version. Finally, an illustrative example is used to demonstrate the feasibility of the theoretical results.
引用
收藏
页码:404 / 411
页数:8
相关论文
共 50 条