Consider a linear regression model where the response variable may be right-censored. The standard maximum likelihood estimator (MLE)-based parametric approach to estimation of regression coefficients requires that the parametric form of the error distribution be known. Given a dataset, we may not be able to find a valid parametric form for the error distribution. In such a case the error distribution is unknown and arbitrary, and a semiparametric approach is plausible. A special modified semiparametric MLE (MSMLE) of the regression coefficients is proposed. Simulation suggests that the MSMLE is consistent is asymptotically normally distributed and may be efficient. The new procedure is applied to engineering data.
机构:
SUNY Binghamton, Dept Math Sci, 4400 Vestal Pkwy E, Binghamton, NY 13902 USASUNY Binghamton, Dept Math Sci, 4400 Vestal Pkwy E, Binghamton, NY 13902 USA
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
Li, Gang
Lu, Xuyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
Lu, Xuyang
Qin, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Dept Stat, Wuhan 430079, Peoples R ChinaHong Kong Baptist Univ, Beijing Normal Univ, United Int Coll, Zhuhai 519085, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Wei, Wenhua
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Zhou, Yong
[J].
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,
2016,
44
(01):
: 58
-
81