POWDER-SCALE MESHFREE SIMULATIONS OF POWDER BED FUSION BASED ADDITIVE MANUFACTURING PROCESSES

被引:0
|
作者
Fan, Zongyue [1 ]
Wang, Hao [1 ]
Li, Bo [1 ]
机构
[1] Case Western Reserve Univ, Dept Mech & Aerosp Engn, Cleveland, OH 44106 USA
基金
美国国家科学基金会;
关键词
meshfree; powder bed fusion; powder-scale; LASER; DENSITY; FLUID;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a powder-scale meshfree direct numerical simulation (DNS) capability for the powder bed fusion (PBF) based additive manufacturing (AM) processes using the novel Hot Optimal Transportation Meshfree (HOTM) method. The HOTM method is an incremental Lagrangian meshfree computational framework for materials behaviors under extreme thermomechanical loading conditions, which combines the Optimal Transportation Meshfree (OTM) method and the variational thermomechanical constitutive updates. The realistic multi-layer powder bed geometry is modeled explicitly in the HOTM simulations based on experimental data. A phase-aware constitutive model is developed to predict the phase change and multiphase mixing during the PBF AM processes automatically. The governing equations including the linear momentum and energy conservation equations are solved for the multiphase flow simultaneously to predict the deformation, temperature and local [ state of the powder particles. The powder-scale DNS is employed to study the influence of various laser powers on the melt pool thermodynamics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Measurement of powder bed density in powder bed fusion additive manufacturing processes
    Jacob, G.
    Donmez, A.
    Slotwinski, J.
    Moylan, S.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (11)
  • [2] A Lagrangian meshfree mesoscale simulation of powder bed fusion additive manufacturing of metals
    Fan, Zongyue
    Wang, Hao
    Huang, Zhida
    Liao, Huming
    Fan, Jiang
    Lu, Jian
    Liu, Chong
    Li, Bo
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (02) : 483 - 514
  • [3] A review of powder deposition in additive manufacturing by powder bed fusion
    Avrampos, Panagiotis
    Vosniakos, George-Christopher
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2022, 74 : 332 - 352
  • [4] Review: Materials Ecosystem for Additive Manufacturing Powder Bed Fusion Processes
    Poorganji, Behrang
    Ott, Eric
    Kelkar, Rajandra
    Wessman, Andrew
    Jamshidinia, Mahdi
    [J]. JOM, 2020, 72 (01) : 561 - 576
  • [5] Review: Materials Ecosystem for Additive Manufacturing Powder Bed Fusion Processes
    Behrang Poorganji
    Eric Ott
    Rajandra Kelkar
    Andrew Wessman
    Mahdi Jamshidinia
    [J]. JOM, 2020, 72 : 561 - 576
  • [6] Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes
    Moylan, Shawn
    Whitenton, Eric
    Lane, Brandon
    Slotwinski, John
    [J]. 40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: INCORPORATING THE 10TH INTERNATIONAL CONFERENCE ON BARKHAUSEN NOISE AND MICROMAGNETIC TESTING, VOLS 33A & 33B, 2014, 1581 : 1191 - 1196
  • [7] A powder-scale multiphysics framework for powder bed fusion of fiber-reinforced polymer composites
    Tan, Pengfei
    Zhou, Meixin
    Tang, Chao
    Zhou, Kun
    [J]. ADVANCED POWDER MATERIALS, 2024, 3 (04):
  • [8] Experimental Characterization and Computational Simulation of Powder Bed for Powder Bed Fusion Additive Manufacturing
    Kikuchi, Keiko
    Tanifuji, Yuta
    Zhou, Weiwei
    Nomura, Naoyuki
    Kawasaki, Akira
    [J]. MATERIALS TRANSACTIONS, 2022, 63 (06) : 931 - 938
  • [9] Experimental characterization and computational simulation of powder bed for powder bed fusion additive manufacturing
    Kikuchi, Keiko
    Tanifuji, Yuta
    Zhou, Weiwei
    Nomura, Naoyuki
    Kawasaki, Akira
    [J]. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68 (10): : 457 - 463
  • [10] Powder bed fusion process in additive manufacturing: An overview
    Singh, Riya
    Gupta, Akash
    Tripathi, Ojestez
    Srivastava, Sashank
    Singh, Bharat
    Awasthi, Ankita
    Rajput, S. K.
    Sonia, Pankaj
    Singhal, Piyush
    Saxena, Kuldeep K.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 3058 - 3070