A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED

被引:6
|
作者
Chen, Yanping [1 ]
Gu, Qiling [2 ]
Li, Qingfeng [2 ]
Huang, Yunqing [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411199, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2022年 / 40卷 / 06期
关键词
Two-grid method; Finite element method; Nonlinear time fractional mixedsub-diffusion and diffusion-wave equations; L1-CN scheme; Stability and convergence; DIFFUSION-EQUATIONS; WAVE-EQUATIONS; CALCULUS; SCHEME;
D O I
10.4208/jcm.2104-m2020-0332
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a two-grid method (TGM) based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations. A two-grid algorithm is proposed for solving the nonlinear system, which consists of two steps: a nonlinear FE system is solved on a coarse grid, then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution. The fully discrete numerical approximation is analyzed, where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with order alpha is an element of(1,2) and alpha 1 is an element of(0,1). Numerical stability and optimal error estimate O(hr+1+H2r+2+tau(min{3-alpha,2-alpha 1})) in L-2 - norm are presented for two-grid scheme, where t, H and h are the time step size, coarse grid mesh size and fine grid mesh size, respectively. Finally, numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.
引用
收藏
页码:936 / 954
页数:19
相关论文
共 50 条
  • [1] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Yang Liu
    Yan-Wei Du
    Hong Li
    Jin-Feng Wang
    Nonlinear Dynamics, 2016, 85 : 2535 - 2548
  • [2] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Liu, Yang
    Du, Yan-Wei
    Li, Hong
    Wang, Jin-Feng
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2535 - 2548
  • [3] TWO-GRID FINITE ELEMENT METHOD FOR TIME-FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Hu, Hanzhang
    Chen, Yanping
    Zhou, Jianwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 1124 - 1144
  • [4] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Zhou, Jie
    Yao, Xing
    Wang, Wansheng
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 709 - 730
  • [5] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Jie Zhou
    Xing Yao
    Wansheng Wang
    Numerical Algorithms, 2022, 90 : 709 - 730
  • [6] A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations
    Fang, Zhichao
    Du, Ruixia
    Li, Hong
    Liu, Yang
    AIMS MATHEMATICS, 2022, 7 (02): : 1941 - 1970
  • [7] A two-grid fully discrete Galerkin finite element approximation for fully nonlinear time-fractional wave equations
    Li, Kang
    Tan, Zhijun
    NONLINEAR DYNAMICS, 2023, 111 (09) : 8497 - 8521
  • [8] A two-grid fully discrete Galerkin finite element approximation for fully nonlinear time-fractional wave equations
    Kang Li
    Zhijun Tan
    Nonlinear Dynamics, 2023, 111 : 8497 - 8521
  • [9] Two-grid mixed finite element method for nonlinear hyperbolic equations
    Wang, Keyan
    Chen, Yanping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1489 - 1505
  • [10] Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations
    Zeng, Yunhua
    Tan, Zhijun
    Applied Mathematics and Computation, 2022, 434