Finite-size scaling at infinite-order phase transitions

被引:3
|
作者
Keesman, Rick [1 ]
Lamers, Jules [2 ,3 ]
Duine, R. A. [2 ,3 ,4 ]
Barkema, G. T. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Lorentz, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[2] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
[3] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
[4] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
classical phase transitions; finite-size scaling; numerical simulations; HAMILTONIAN FIELD-THEORY; WALL BOUNDARY-CONDITIONS; MONTE-CARLO; CRITICAL-BEHAVIOR; 6-VERTEX MODEL; F-MODEL; LATTICE;
D O I
10.1088/1742-5468/2016/09/093201
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
For systems with infinite-order phase transitions, in which an order parameter smoothly becomes nonzero, a new observable for finite-size scaling analysis is suggested. By construction this new observable has the favourable property of diverging at the critical point. Focussing on the example of the F-model we compare the analysis of this observable with that of another observable, which is also derived from the order parameter but does not diverge, as well as that of the associated susceptibility. We discuss the difficulties that arise in the finite-size scaling analysis of such systems. In particular we show that one may reach incorrect conclusions from large-system size extrapolations of observables that are not known to diverge at the critical point. Our work suggests that one should base finite-size scaling analyses for infinite-order phase transitions only on observables that are guaranteed to diverge.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nonstandard Finite-Size Scaling at First-Order Phase Transitions
    Mueller, Marco
    Janke, Wolfhard
    Johnston, Desmond A.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (20)
  • [2] FINITE-SIZE SCALING AT 1ST-ORDER PHASE-TRANSITIONS
    BINDER, K
    LANDAU, DP
    [J]. PHYSICAL REVIEW B, 1984, 30 (03): : 1477 - 1485
  • [3] Finite-size scaling for discontinuous nonequilibrium phase transitions
    de Oliveira, Marcelo M.
    da Luz, M. G. E.
    Fiore, Carlos E.
    [J]. PHYSICAL REVIEW E, 2018, 97 (06)
  • [4] Finite-size scaling and universality at nonequilibrium phase transitions
    Brankov, JG
    Bunzarova, NZ
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2005, 36 : S88 - S92
  • [5] Finite-Size Scaling at First-Order Quantum Transitions
    Campostrini, Massimo
    Nespolo, Jacopo
    Pelissetto, Andrea
    Vicari, Ettore
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (07)
  • [6] Dynamic finite-size scaling at first-order transitions
    Pelissetto, Andrea
    Vicari, Ettore
    [J]. PHYSICAL REVIEW E, 2017, 96 (01)
  • [7] TEST OF FINITE-SIZE SCALING IN 1ST ORDER PHASE-TRANSITIONS
    CABRERA, GG
    JULLIEN, R
    BREZIN, E
    ZINNJUSTIN, J
    [J]. JOURNAL DE PHYSIQUE, 1986, 47 (08): : 1305 - 1313
  • [8] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    [J]. PHYSICAL REVIEW B, 2014, 89 (09)
  • [9] Finite-size behavior in phase transitions and scaling in the progress of an epidemic
    Das, Subir K.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 646
  • [10] VORTICES AND FINITE-SIZE SCALING OF SUPERFLUID PHASE-TRANSITIONS
    WILLIAMS, GA
    [J]. PHYSICA B, 1990, 165 : 769 - 770