Synaptic compensation on Hopfield network: implications for memory rehabilitation

被引:3
|
作者
Menezes, R. A. [1 ]
Monteiro, L. H. A. [1 ,2 ]
机构
[1] Univ Presbiteriana Mackenzie, Escola Engn, BR-01302907 Sao Paulo, Brazil
[2] Univ Sao Paulo, Escola Politecn, Dept Engn Telecomunicacoes & Controle, BR-05508900 Sao Paulo, Brazil
来源
NEURAL COMPUTING & APPLICATIONS | 2011年 / 20卷 / 05期
关键词
Alzheimer's disease; Hopfield neural network; Memory rehabilitation; Synaptic compensation; NEURAL NETWORKS; PLASTICITY; RECOGNITION; IMPAIRMENT; SYSTEMS; NEURONS;
D O I
10.1007/s00521-010-0480-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The discrete-time neural network proposed by Hopfield can be used for storing and recognizing binary patterns. Here, we investigate how the performance of this network on pattern recognition task is altered when neurons are removed and the weights of the synapses corresponding to these deleted neurons are divided among the remaining synapses. Five distinct ways of distributing such weights are evaluated. We speculate how this numerical work about synaptic compensation may help to guide experimental studies on memory rehabilitation interventions.
引用
收藏
页码:753 / 757
页数:5
相关论文
共 50 条
  • [1] Synaptic compensation on Hopfield network: implications for memory rehabilitation
    R. A. Menezes
    L. H. A. Monteiro
    Neural Computing and Applications, 2011, 20 : 753 - 757
  • [2] The kernel Hopfield memory network
    García, C
    Moreno, JA
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 755 - 764
  • [3] Implications of synaptic biophysics for recurrent network dynamics and active memory
    Durstewitz, Daniel
    NEURAL NETWORKS, 2009, 22 (08) : 1189 - 1200
  • [4] Memristive synaptic crosstalk effects on Hopfield neural network
    Zhang, Yapeng
    Dongl, Enzeng
    Tong, Jigang
    Li, Ronghao
    Yang, Sen
    Duane, Feng
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1697 - 1701
  • [5] Associative memory in quaternionic hopfield neural network
    Isokawa, Teijiro
    Nishimura, Haruhiko
    Kamiura, Naotake
    Matsui, Nobuyuki
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2008, 18 (02) : 135 - 145
  • [6] The asymptotic memory capacity of the generalized Hopfield network
    Ma, JW
    NEURAL NETWORKS, 1999, 12 (09) : 1207 - 1212
  • [7] Five variations of Hopfield associative memory network
    Schultz, Abraham
    Journal of artificial neural networks, 1995, 2 (03): : 285 - 294
  • [8] Hopfield Network as Associative Memory with Multiple Reference Points
    Lopez-Rodriguez, Domingo
    Merida-Casermeiro, Enrique
    Ortiz-de-Lazcano-Lobato, Juan M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 7, 2005, 7 : 62 - 67
  • [9] Writing to the Hopfield Memory via Training a Recurrent Network
    Bao, Han
    Zhang, Richong
    Mao, Yongyi
    Huai, Jinpeng
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11671 : 241 - 254
  • [10] Hopfield network as associative memory with multiple reference points
    López-Rodríguez, D
    Mérida-Casermeiro, E
    Ortiz-de-Lazcano-Lobato, JM
    ENFORMATIKA, VOL 7: IEC 2005 PROCEEDINGS, 2005, : 62 - 67