Differentiable Multi-Agent Actor-Critic for Multi-Step Radiology Report Summarization

被引:0
|
作者
Karn, Sanjeev Kumar [1 ]
Liu, Ning [2 ]
Schuetze, Hinrich [3 ]
Farri, Oladimeji [1 ]
机构
[1] Siemens Healthineers, Digital Technol & Innovat, Princeton, NJ 08540 USA
[2] Siemens AG, Corp Technol, Beijing, Peoples R China
[3] Ludwig Maximilians Univ Munchen, Ctr Informat & Language Proc CIS, Munich, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The IMPRESSIONS section of a radiology report about an imaging study is a summary of the radiologist's reasoning and conclusions, and it also aids the referring physician in confirming or excluding certain diagnoses. A cascade of tasks are required to automatically generate an abstractive summary of the typical information-rich radiology report. These tasks include acquisition of salient content from the report and generation of a concise, easily consumable IMPRESSIONS section. Prior research on radiology report summarization has focused on single-step end-to-end models - which subsume the task of salient content acquisition. To fully explore the cascade structure and explainability of radiology report summarization, we introduce two innovations. First, we design a two-step approach: extractive summarization followed by abstractive summarization. Second, we additionally break down the extractive part into two independent tasks: extraction of salient (1) sentences and (2) keywords. Experiments on English radiology reports from two clinical sites show our novel approach leads to a more precise summary compared to single-step and to two-step-with-single-extractive-process baselines with an overall improvement in F1 score of 3-4%.
引用
收藏
页码:1542 / 1553
页数:12
相关论文
共 50 条
  • [1] B -Level Actor-Critic for Multi-Agent Coordination
    Zhang, Haifeng
    Chen, Weizhe
    Huang, Zeren
    Li, Minne
    Yang, Yaodong
    Zhang, Weinan
    Wang, Jun
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 7325 - 7332
  • [2] Divergence-Regularized Multi-Agent Actor-Critic
    Su, Kefan
    Lu, Zongqing
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [3] Actor-Critic Algorithms for Constrained Multi-agent Reinforcement Learning
    Diddigi, Raghuram Bharadwaj
    Reddy, D. Sai Koti
    Prabuchandran, K. J.
    Bhatnagar, Shalabh
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1931 - 1933
  • [4] Multi-Agent Natural Actor-Critic Reinforcement Learning Algorithms
    Prashant Trivedi
    Nandyala Hemachandra
    [J]. Dynamic Games and Applications, 2023, 13 : 25 - 55
  • [5] A New Advantage Actor-Critic Algorithm For Multi-Agent Environments
    Paczolay, Gabor
    Harmati, Istvan
    [J]. 2020 23RD IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENT AND CONTROL IN ROBOTICS (ISMCR), 2020,
  • [6] Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning
    Christianos, Filippos
    Schafer, Lukas
    Albrecht, Stefano V.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] Improving sample efficiency in Multi-Agent Actor-Critic methods
    Ye, Zhenhui
    Chen, Yining
    Jiang, Xiaohong
    Song, Guanghua
    Yang, Bowei
    Fan, Sheng
    [J]. APPLIED INTELLIGENCE, 2022, 52 (04) : 3691 - 3704
  • [8] Multi-agent actor-critic with time dynamical opponent model
    Tian, Yuan
    Kladny, Klaus -Rudolf
    Wang, Qin
    Huang, Zhiwu
    Fink, Olga
    [J]. NEUROCOMPUTING, 2023, 517 : 165 - 172
  • [9] MULTI-STEP ACTOR-CRITIC FRAMEWORK FOR REINFORCEMENT LEARNING IN CONTINUOUS CONTROL
    Huang T.
    Chen G.
    [J]. Journal of Applied and Numerical Optimization, 2023, 5 (02): : 189 - 200
  • [10] Distributed Multi-Agent Reinforcement Learning by Actor-Critic Method
    Heredia, Paulo C.
    Mou, Shaoshuai
    [J]. IFAC PAPERSONLINE, 2019, 52 (20): : 363 - 368