A high-performance all-iron non-aqueous redox flow battery

被引:62
|
作者
Zhen, Yihan [1 ,2 ]
Zhang, Cuijuan [1 ,2 ]
Yuan, Jiashu [1 ,2 ]
Zhao, Yicheng [1 ,2 ]
Li, Yongdan [1 ,2 ,3 ]
机构
[1] Tianjin Univ, State Key Lab Chem Engn, Tianjin Key Lab Appl Catalysis Sci & Technol, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Aalto Univ, Sch Chem Engn, Dept Chem & Met Engn, Kemistintie 1,POB 16100, FI-700076 Espoo, Aalto, Finland
基金
中国国家自然科学基金;
关键词
Electrochemical energy storage; Redox flow battery; Non-aqueous electrolyte; Organometallic materials; ENERGY-STORAGE; COMPLEXES; ELECTROLYTES; CATHOLYTE; FERROCENE; SOLVENTS; COBALT;
D O I
10.1016/j.jpowsour.2019.227331
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An all-iron non-aqueous redox flow battery (NARFB) based on iron acetylacetonate (Fe(acac)(3)) anolyte and N-(ferrocenylmethyl)-N,N-dimethyl -N-ethylammonium bis(trifluoromethane-sulfonyl)imide (Fc1N112-TESI) catholyte with an open circuit voltage of 1.34 V is designed. Due to the high electrochemical activity of the active species, the resultant battery demonstrates fairly high cycling performance and rate capability with anion exchange membrane FAP-375-PP. The Coulombic efficiency (CE) of 98.7%, voltage efficiency (VE) of 84.5%, and energy efficiency (EE) of 83.4% are achieved over 100 cycles at the current density of 10 mA cm(-2). VE and EE can be further enhanced by employing mixed-reactant electrolyte as both anolyte and catholyte, which are 89.2% and 85.2%, respectively. The underlying reasons for the capacity decay are discussed for future optimization.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] All-iron non-aqueous redox flow battery with a high performance and stability
    Zhen, Yihan
    Li, Yongdan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [2] A high-performance all-metallocene-based, non-aqueous redox flow battery
    Ding, Yu
    Zhao, Yu
    Li, Yutao
    Goodenough, John B.
    Yu, Guihua
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) : 491 - 497
  • [3] All-Soluble All-Iron Aqueous Redox-Flow Battery
    Gong, Ke
    Xu, Fei
    Grunewald, Jonathan B.
    Ma, Xiaoya
    Zhao, Yun
    Gu, Shuang
    Yan, Yushan
    [J]. ACS ENERGY LETTERS, 2016, 1 (01): : 89 - 93
  • [4] Enhancing the performance of an all-organic non-aqueous redox flow battery
    Yuan, Jiashu
    Zhang, Cuijuan
    Zhen, Yihan
    Zhao, Yicheng
    Li, Yongdan
    [J]. JOURNAL OF POWER SOURCES, 2019, 443
  • [5] Progresses and Perspectives of All-Iron Aqueous Redox Flow Batteries
    Belongia, Shawn
    Wang, Xiang
    Zhang, Xin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
  • [6] Improvements to the Coulombic Efficiency of the Iron Electrode for an All-Iron Redox-Flow Battery
    Jayathilake, B. S.
    Plichta, E. J.
    Hendrickson, M. A.
    Narayanan, S. R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) : A1630 - A1638
  • [7] Electrochemical analysis of electrolyte temperature and composition for all-iron redox flow battery
    Zhang, Qian
    Song, Yuxi
    [J]. INTERNATIONAL JOURNAL OF GREEN ENERGY, 2022, 19 (12) : 1285 - 1289
  • [8] Improvement in the Performance of an Fe/FeII Electrode in an All-Iron Redox Flow Battery by the addition of ZnII ions
    Balakrishnan, Jeena Chullipparambil
    Peter, Moly Pulikkotti
    Kombarakaran, Daiphi Davis
    Kunjilona, Jibin Ambadan
    Thomas, Joy Vadakkan
    [J]. CHEMISTRYSELECT, 2022, 7 (22):
  • [9] Membranes in non-aqueous redox flow battery: A review
    Yuan, Jiashu
    Pan, Zheng-Ze
    Jin, Yun
    Qiu, Qianyuan
    Zhang, Cuijuan
    Zhao, Yicheng
    Li, Yongdan
    [J]. JOURNAL OF POWER SOURCES, 2021, 500
  • [10] An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
    Brushett, Fikile R.
    Vaughey, John T.
    Jansen, Andrew N.
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (11) : 1390 - 1396