On The Global Dynamic Optimization of Highly Nonlinear Systems

被引:0
|
作者
Flores-Tlacuahuac, A. [1 ]
Biegler, L. T. [2 ]
机构
[1] Univ Iberoamer, Dept Ingn & Ciencias Quim, Prol Paseo Reforma 880, Mexico City 01210, DF, Mexico
[2] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address the relationship between nonlinear behavior and the determination of globally optimal solutions in dynamic systems. Specifically, in determination of optimal transition trajectories between steady state operating points, we analyze the impact of output multiplicities in obtaining global optima around regions featuring severe nonlinearities. In order to quantify the presence or multiple local optima we propose an empirical indicator able to predict the potential for the emergence of unique global solutions. Although the presence of output multiplicities does not seem to be strictly necessary to detect multiple optima, we find that unique global solutions are likely to emerge for transitions around nonlinear regions. Moreover, for dynamic optimization, we found that current global optimization solvers tend to demand large computational effort when compared against local optimization solvers. Therefore, with appropriate variable bounds, good initialization strategies and, if necessary, multiple restart strategies, local optimization solvers seem to be competitive, in terms of CPU time, when faced with the decision of finding global optimal solutions.
引用
收藏
页码:1227 / 1232
页数:6
相关论文
共 50 条
  • [1] Global optimization of highly nonlinear dynamic systems
    Flores-Tlacuahuac, Antonio
    Moreno, Sebastian Terrazas
    Biegler, Lorenz T.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (08) : 2643 - 2655
  • [2] Deterministic global optimization of nonlinear dynamic systems
    Lin, Youdong
    Stadtherr, Mark A.
    [J]. AICHE JOURNAL, 2007, 53 (04) : 866 - 875
  • [3] Global optimization of dynamic systems
    Papamichail, I
    Adjiman, CS
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (03) : 403 - 415
  • [4] Deterministic global optimization for nonlinear model predictive control of hybrid dynamic systems
    Long, Christopher E.
    Polisetty, Pradeep K.
    Gatzke, Edward P.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (13) : 1232 - 1250
  • [5] Global Solution of Min-Max Optimization Problems for Nonlinear Dynamic Systems
    Zhao, Yao
    Stadtherr, Mark A.
    [J]. 22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 1287 - 1291
  • [6] MACHINE OPTIMIZATION OF NONLINEAR DYNAMIC SYSTEMS
    GORSKII, AA
    [J]. AUTOMATION AND REMOTE CONTROL, 1970, (08) : 1217 - &
  • [7] ON THE OPTIMIZATION AND GLOBAL LINEARIZATION OF NONLINEAR-SYSTEMS
    GAO, WB
    CHAN, SP
    WONG, YK
    [J]. PROCEEDINGS OF THE 1989 AMERICAN CONTROL CONFERENCE, VOLS 1-3, 1989, : 2572 - 2573
  • [8] PARAMETRIC OPTIMIZATION OF NONLINEAR DYNAMIC-SYSTEMS
    TRIGUB, MV
    [J]. AUTOMATION AND REMOTE CONTROL, 1992, 53 (07) : 978 - 988
  • [9] AN ALGORITHM OF OPTIMIZATION FOR NONLINEAR DYNAMIC-SYSTEMS
    GABASOV, R
    KIRILLOVA, FM
    KOSTIUKOVA, OI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1990, 313 (03): : 537 - 540
  • [10] Dynamic optimization of nonlinear systems with unknown parameters
    Fu, Jun
    Peng, Yan
    Liu, Yan-Hui
    [J]. Kongzhi yu Juece/Control and Decision, 2023, 38 (08): : 2223 - 2230