A tool for deterministic and probabilistic sensitivity analysis of epidemiologic studies

被引:95
|
作者
Orsini, Nicola [1 ]
Bellocco, Rino [2 ]
Bottai, Matteo [3 ]
Wolk, Alicja [1 ]
Greenland, Sander [4 ]
机构
[1] Karolinska Inst, Inst Environm Med, Div Nutr Epidemiol, S-10401 Stockholm, Sweden
[2] Univ Milano Bicocca, Dept Stat, Milan, Italy
[3] Univ S Carolina, Arnold Sch Publ Hlth, Dept Epidemiol & Biostat, Columbia, SC USA
[4] Univ Calif Los Angeles, Dept Epidemiol Stat, Los Angeles, CA USA
来源
STATA JOURNAL | 2008年 / 8卷 / 01期
关键词
st0138; episens; episensi; sensitivity analysis; unmeasured confounder; misclassification; bias; epidemiology;
D O I
10.1177/1536867X0800800103
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Classification errors, selection bias, and uncontrolled confounders are likely to be present in most epidemiologic studies, but the uncertainty introduced by these types of biases is seldom quantified. The authors present a simple yet easy-to-use Stata command to adjust the relative risk for exposure misclassification, selection bias, and an unmeasured confounder. This command implements both deterministic and probabilistic sensitivity analysis. It allows the user to specify a variety of probability distributions for the bias parameters, which are used to simulate distributions for the bias-adjusted exposure-disease relative risk. We illustrate the command by applying it to a case-control study of occupational resin exposure and lung-cancer deaths. By using plausible probability distributions for the bias parameters, investigators can report results that incorporate their uncertainties regarding systematic errors and thus avoid overstating their certainty about the effect under study. These results can supplement conventional results and can help pinpoint major sources of conflict in study interpretations.
引用
收藏
页码:29 / 48
页数:20
相关论文
共 50 条
  • [1] DETERMINISTIC AND PROBABILISTIC UNCERTAINTIES IN SENSITIVITY STUDIES
    HWANG, RN
    HENRYSON, HH
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1974, 18 (JUN23): : 338 - 340
  • [2] Using a probabilistic tool for making sensitivity analysis
    Homet, P
    [J]. SAFETY AND RELIABILITY, VOLS 1 & 2, 1999, : 827 - 831
  • [3] Development of an analysis tool for deterministic and probabilistic viscoelastic continuum damage approach
    Al Assi, Ayat
    Sadek, Husam
    Massarra, Carol
    Sadeq, Mohammed
    Friedland, Carol J.
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2021, 306
  • [4] DETERMINISTIC AND PROBABILISTIC STUDIES ON COMMUNICATION NETWORKS
    LING, ST
    TEZUKA, Y
    KASAHARA, Y
    [J]. ELECTRONICS & COMMUNICATIONS IN JAPAN, 1965, 48 (01): : 47 - &
  • [5] On the use of the E-value for sensitivity analysis in epidemiologic studies
    Rigo Vale, Conceicao Christina
    de Oliveira Almeida, Nubia Karla
    Varnier Rodrigues de Almeida, Renan Moritz
    [J]. CADERNOS DE SAUDE PUBLICA, 2021, 37 (06):
  • [6] ANALYSIS OF SEROVAR DISTRIBUTION AS A TOOL IN EPIDEMIOLOGIC-STUDIES IN GONORRHEA
    RUDEN, AK
    BACKMAN, M
    BYGDEMAN, S
    JONSSON, A
    RINGERTZ, O
    SANDSTROM, E
    [J]. ACTA DERMATO-VENEREOLOGICA, 1986, 66 (04) : 325 - 333
  • [7] Probabilistic cost effectiveness analysis of HIV prevention - Comparing a Bayesian approach with traditional deterministic sensitivity analysis
    Johnson-Masotti, AP
    Laud, PW
    Hoffmann, RG
    Hayat, MJ
    Pinkerton, SD
    [J]. EVALUATION REVIEW, 2001, 25 (04) : 474 - 502
  • [8] On integration of probabilistic and deterministic safety analysis
    Cepin, M
    Wardzinski, A
    [J]. 3RD REGIONAL MEETING NUCLEAR ENERGY IN CENTRAL EUROPE / ANNUAL MEETING OF THE NUCLEAR SOCIETY OF SLOVENIA, PROCEEDINGS, 1996, : 188 - 195
  • [9] Sensitivity studies for a probabilistic analysis of spacecraft random reentry disassembly
    Frank, MV
    Weaver, MA
    Baker, RL
    [J]. SAFETY AND RELIABILITY, VOLS 1 AND 2, 2003, : 635 - 642
  • [10] A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study
    Baroni, G.
    Tarantola, S.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 51 : 26 - 34