Finite Noncommutative Geometries Related to Fp[x]

被引:0
|
作者
Bossett, M. E. [1 ]
Majid, S. [1 ]
机构
[1] Queen Mary Univ London, Sch Math, Mile End Rd, London E1 4NS, England
关键词
Noncommutative geometry; Finite field; Prime number; Hopf algebra; Quantum group; Bimodule Riemannian geometry; Galois extension; Cocycle; Boolean algebra;
D O I
10.1007/s10468-018-09846-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that irreducible noncommutative differential structures over F-p[x] are classified by irreducible monics m. We show that the cohomology H-dR(0)(F-p[x]; m) = F-p [g(d)] if and only if Trace(m) not equal = 0, where g(d) = x(pd) - x and d is the degree of m. This implies that there are p-1/p(d) Sigma(k vertical bar d,p vertical bar k) mu(M)(k)p(d/k) such noncommutative differential structures (mu(M) the Mobius function). Motivated by killing this zero'th cohomology, we consider the directed system of finite-dimensional Hopf algebras A(d) = F-p[x]/(g(d)) as well as their inherited bicovariant differential calculi Omega (A(d); m). We show that A(d) = C-d circle times(chi) A(1) is a cocycle extension where C-d = A(d)(psi) is the subalgebra of elements fixed under psi(x) = x + 1. We also have a Frobenius-fixed subalgebra B-d of dimension 1/d Sigma(k vertical bar d)phi(k)p(d/k) (phi the Euler totient function), generalising Boolean algebras when p = 2. As special cases, A(1) congruent to F-p(Z/pZ), the algebra of functions on the finite group Z/pZ, and we show dually that FpZ/pZ congruent to F-p[L]/(L-p) for a 'Lie algebra' generator L with e(L) group-like, using a truncated exponential. By contrast, A(2) over F-2 is a cocycle modification of F-2((Z/2Z)(2)) and is a 1-dimensional extension of the Boolean algebra on 3 elements. In both cases we compute the Fourier theory, the invariant metrics and the Levi-Civita connections within bimodule noncommutative geometry.
引用
收藏
页码:251 / 274
页数:24
相关论文
共 50 条
  • [1] Finite field theory on noncommutative geometries
    Cho, S
    Hinterding, R
    Madore, J
    Steinacker, H
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (02): : 161 - 199
  • [2] Path integral quantisation of finite noncommutative geometries
    Hale, M
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (2-3) : 115 - 128
  • [3] Random finite noncommutative geometries and topological recursion
    Azarfar, Shahab
    Khalkhali, Masoud
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2024, 11 (03): : 409 - 451
  • [4] On Poisson geometries related to noncommutative emergent gravity
    Kuntner, Nikolaj
    Steinacker, Harold
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (08) : 1760 - 1777
  • [5] A FAMILY OF NONCOMMUTATIVE GEOMETRIES
    Sinha, Debabrata
    Giri, Pulak Ranjan
    [J]. MODERN PHYSICS LETTERS A, 2011, 26 (29) : 2213 - 2221
  • [6] Noncommutative geometries and gravity
    Mueller-Hoissen, Folkert
    [J]. RECENT DEVELOPMENTS IN GRAVITATION AND COSMOLOGY, 2008, 977 : 12 - 29
  • [7] Noncommutative geometries: An overview
    Perini, Claudio
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (08): : 1253 - 1256
  • [8] Noncommutative space from dynamical noncommutative geometries
    Van Oystaeyen, Freddy
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (02) : 185 - 196
  • [9] Gauge fields on noncommutative geometries with curvature
    M. Burić
    H. Grosse
    J. Madore
    [J]. Journal of High Energy Physics, 2010
  • [10] Gauge fields on noncommutative geometries with curvature
    Buric, M.
    Grosse, H.
    Madore, J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (07):